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1. Introduction

We study the in-sample and the out-of-sample performance of dynamic yield curve

models for which the time-varying parameters are formulated either as observation-driven

or as parameter-driven models. Our main focus is on the parsimonious yield curve model

of Nelson and Siegel (1987) which is extended within a dynamic setting by Diebold and

Li (2006) and Diebold, Rudebusch, and Aruoba (2006); it is called the dynamic Nelson-

Siegel model (DNSM). The model describes the yield curve as a linear function of three

latent factors referred to as level, slope, and curvature. These factors have an impact on

the shape of the yield curve. For reasons of tractability, it is usually assumed that (i) the

yield is a linear function of the factors, (ii) the disturbances for each interest rate equation

are Gaussian with a constant variance, and (iii) that the disturbances are serially and

mutually uncorrelated. Under these strict assumptions, we can consider a linear Gaussian

state space formulation for the DNSM and we can estimate its static parameters by exact

maximum likelihood methods based on the Kalman Filter; see Diebold, Rudebusch, and

Aruoba (2006). The parsimony of the specification enables us to fit the DNSM using

low-frequency, monthly data while maintaining an acceptable ratio of observations versus

parameters. This is a useful feature in many empirical settings where good quality high-

frequency data may be scarce.

The strict assumptions of normally distributed, uncorrelated, and homoskedastic resid-

uals may, however, be harder to justify for data observed at a higher frequency, for exam-

ple, daily data. Similarly, these assumptions are likely to be violated in times of economic

unrest, such as during the financial crisis of 2007–2008. For instance, Koopman, Mallee,

and Van der Wel (2010) and Mesters, Schwaab, and Koopman (2014) show that volatili-

ties of pricing errors are indeed time-varying even at monthly or weekly frequencies and

that the inclusion of only a common time-varying volatility factor improves the fit of the

models considerably. Even though we focus on the daily data, our robustness analysis

confirms these results as we find evidence for both conditional heteroskedasticity and fat-

tailedness of pricing errors for monthly and weekly data as well. When we leave the linear,

homoskedastic Gaussian model assumptions, however, we typically face a substantially

more complicated estimation challenge. For example, Koopman, Mallee, and Van der Wel

(2010) and Mesters, Schwaab, and Koopman (2014) adopt simulation-based estimation
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methods, such as Monte Carlo importance sampling, to obtain the maximum likelihood

estimates.

In our study, we consider a different class of models with the aim to describe the

term structure dynamics more accurately in terms of the empirical, stylized properties

of interest rate data observed at higher (daily) frequencies while keeping the estimation

process feasible. In particular, we adopt the class of score-driven models as introduced

by Creal, Koopman, and Lucas (2011, 2013); see also Harvey (2013).1 An important

advantage of score-driven models is that they are a sub-class of observation-driven models

in the classification of Cox (1981). Therefore, an explicit, tractable expression for the

likelihood function is available which facilitates the estimation of the static parameters

in these models. As a result, estimation and inference by standard maximum likelihood

procedures are relatively straightforward to implement and to execute. Moreover, the

framework easily allows for further generalisations of the yield curve model, as long as

the conditional observation density of the cross-section of yields remains tractable.

We consider a sequence of score-driven models that gradually relaxes the restrictive

distributional assumptions discussed above. Specifically, we extend the model with time-

varying volatility structures, possibly driven by common components. Furthermore, apart

from having disturbances from a multivariate Gaussian distribution, we also allow dis-

turbances to come from fat-tailed distributions, namely from the multivariate Student’s t

distribution. Overall, we consider 13 competing specifications from which ten specifica-

tions belong to the class of score-driven models and three specifications are within the

parameter-driven framework. Koopman, Lucas, and Scharth (2016) show in a univariate

context that the performance of score-driven models is competitive in terms of in-sample

fit and quality of out-of-sample forecasts when compared to that of parameter-driven

models, for a range of data-generating processes. Their results surprisingly continue to

hold if the parameter-driven model is the true data-generating process. At the same time,

however, all of their results are restricted to the univariate setting. Using our current

set-up and framework, we are able to verify whether these results continue to hold in

a multivariate context. In fact, we find that the advantages in the multivariate context

may even be larger in certain cases than in the univariate setting.

1For a more complete compilation of recent work on score-driven models, we refer to the website
gasmodel.com.
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In the empirical part of the paper, we consider all 13 models for the analysis of two

daily interest rate datasets. The first is the typical U.S. data used in the literature. We

also model interest rates in Poland which has a less developed financial market. The

modelling of this data creates some interesting questions and challenges. For one, the

market in Poland is less liquid so the time-varying volatility is more pronounced and

periods of high pricing errors are prolonged. Furthermore, the sample length is much

shorter than for U.S. or for other (developed) European economies which is part of the

motivation to use higher frequency data. Our overall conclusion from the analysis is that

by increasing the complexity of the model, we obtain considerable improvements in the

fit. Of all extensions in our study, the largest improvements in fit are obtained by the

extension that allows for the heteroskedasticity in pricing errors. Also, by allowing for

multiple volatility factors, we provide new insight into what drives the dynamics of the

yield curve in high-volatility regimes. This is in line with the parameter-driven results

of Koopman, Mallee, and Van der Wel (2010). The benefits of allowing for fat-tailed

conditional distributions are much smaller once heteroskedasticity is present in the model

specification.

To quantify the potential gains from gradually increasing model complexity, we also

conduct an extended Monte Carlo study. In a simulation study, the true values of the

dynamic parameters are set a-priori. We can therefore evaluate all models in terms of

the root-mean-square error (RMSE) and mean absolute percentage error (MAPE) for the

whole sample. Based on such simulations, we find that the impact of the model extensions

depends heavily on the time-to-maturity of the yield. Having more features in the model

appears to benefit the short maturity yields mostly, with an improved in-sample and out-

of-sample fit. For the long-term maturities, simple models that do not incorporate all

relevant features appear to perform as accurately as their more complex counterparts.

Differences in in-sample fit only occur during low-volatility and high-volatility regimes.

For multiple-period-ahead forecasts we observe a gradual decay in relative performance

of the simple models with the short-term maturities being especially affected. Despite

their comparable performance, the extended models still have the advantage of offering

valuable insights into what drives the changes in short-term interest rates and how likely

these changes are to persist.
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The remainder of this paper is organised as follows. In Section 2 we distinguish between

parameter-driven and observation-driven models. We present the general specification of

the dynamic Nelson-Siegel model and the generalisations used in Section 3. There, we

also highlight the different estimation approaches used, i.e., for the parameter-driven and

score-driven models. In Section 4, we present the results of a large-scale Monte Carlo

study in which we assess the performance of our models. An empirical study of U.S. and

Polish interest rates is presented in Section 5. Finally, Section 6 concludes.

2. Score-driven and parameter-driven methods

To introduce score-driven models and distinguish them from parameter-driven models,

consider a time-series model of an observed time series y1, . . . , yT characterised by the

conditional density

yt ∼ p (yt|Yt−1, f t; θ) , (1)

where yt is an N × 1 vector and Yt−1 = {y1, . . . , yt−1} is the information set available

to the agent just before time t. The conditional observation density p(· | Yt−1, f t; θ)

also depends on two parameter vectors: θ and f t, which lie in the parameter spaces Θ

and F , respectively. The parameters grouped in f t are assumed to be time-varying with

possibly unknown dynamics that may also depend on the static parameters θ. At this

level of generality, both the dynamic and static parameters can enter the model eq. (1)

non-linearly. For instance, in Creal, Koopman, Lucas, and Zamojski (2015) I model time-

varying relative risk aversion in the consumption capital asset pricing model with the

standard constant relative risk aversion (CRRA) utility function.

Depending on how the dynamics of the time-varying parameter are specified, we dis-

tinguish parameter-driven and observation-driven models as in Cox (1981). In parameter-

driven models we have f t+1 = ϕ (ζt, f t) for some function ϕ (·), where ζt is a random inno-

vation given the information set Yt−1. In the parameter-driven setting, observations and

the latent factors can evolve independently and the transition equations of the dynamic

parameters are ‘parameter-driven’ since we need to impose distributional assumptions

on f t as well. A typical example of a parameter-driven model is the stochastic volatil-

ity model; see Shephard (2005) for an overview. Parameter-driven models are of special
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interest in structural modelling as they allow one to independently study the effects of

shocks to different time-varying parameters; see Fernández-Villaverde and Rubio-Ramírez

(2013) for a discussion on the benefits of incorporating stochastic volatility in dynamic

stochastic general equilibrium models. More generally, many parameter-driven models

can be formulated in state space form with the dynamic parameter f t treated as a latent

state vector. For the purpose of modelling the term-structure of interest rates with the

DNSMs, we consider a linear dynamic specification for f t,

f t+1 = δ + Φf t + ηt, ηt ∼ N (0, Σ) . (2)

Estimation of parameter-driven models may be cumbersome since the state variables

need to be ‘integrated out’ from the joint density of observations and latent factors. If

the necessary conditional distributions are not readily available in closed form, obtain-

ing maximum likelihood estimators for θ requires the use of computationally intensive

simulation methods; see Durbin and Koopman (2012) for a general discussion.

By contrast, in observation-driven models in the sense proposed by Cox, the dynamic

parameters f t in eq. (1) vary over time as a function of lagged dependent variables, lagged

exogenous variables, and the static parameters, θ. In other words, these models only have

a single source of error which stems from the conditional distribution in eq. (1). Formally

we write, f t+1 = ϕ (Yt, f 1; θ). And in particular, we may have that f t+1 = ϕ (yt, f t; θ) if

{yt} come from a Markov process. A typical example of an observation-driven model is

the family of generalised autoregressive conditional heteroskedasticity (GARCH) models

originated by Engle (1982) and Bollerslev (1986). In this class of models, values of dynamic

parameters are perfectly predictable one-step-ahead given past information. This feature

of observation-driven models makes evaluation of the likelihood straightforward through

a direct prediction error decomposition.

For observation-driven models, the usual treatment imposes a linear, autoregressive

updating function for the dynamic parameter,

f t+1 = ω + B (f t − ω) + Ast(yt, f t; θ), (3)

where ω, A, and B are part of the static parameter vector θ. In this specification,
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ω captures the unconditional mean, B determines the persistence, and A the learning

rate. The function st(·) can be chosen in a flexible way. Depending on the choice of

st we obtain different classes of observation-driven models. Creal, Koopman, and Lucas

(2013) and Harvey (2013) propose a scaled first derivative of the local criterion function

as a choice for st. This is also the approach that is adopted in Creal, Koopman, Lucas,

and Zamojski (2015) who work within the method of moments framework. Due to this

we refer to this class of models as score-driven models. In particular, the generalised

autoregressive score (GAS) method of Creal, Koopman, and Lucas (2013) sets

st = St∇t, ∇t = ∂p (yt|f t, Yt; θ)
∂f⊺

t

, St = I−k
t|t−1, (4)

where It|t−1 = E[∇t∇⊺
t ] = − E[∂2p (yt|f t, Yt; θ)/∂f2

t ] is the conditional Fisher information

matrix and k = {0, 1/2, 1}. This choice of the functional specification of st to drive the

dynamic parameters is far from arbitrary. If k = 1 and B = I, eq. (3) reduces to a scaled

Gauss-Newton update in the time dimension; if k = 0 (unit scaling) we take steepest

ascent updates. Note that in practice, it is often preferable to avoid unit scaling as it

may lead the filter to over-react to outliers. Furthermore, if f t is indeed time-varying, it

is intuitive to temporarily adjust the value of f t if observations persistently signal that

the model locally does not fit the data. By improving the fit in the neighbourhood of the

most recent observation, the score-driven approach tries to improve the fit of the model

in other regions of the sample space as well. This also means that score-driven models

are more intuitively thought of as filters rather than as data-generating processes. In the

case of modelling volatility with a GAS model, Nelson (1992) shows that these filters can

produce consistent estimates of paths of time-varying parameters even if the filter (or

model) is not the data-generating process.

Score-driven models encompass a wide range of well-known and popular observation-

driven models; see Creal, Koopman, and Lucas (2013) for an overview. Considerable work

has been done in recent years to establish the theoretical properties of score-driven models.

In particular, Blasques, Koopman, and Lucas (2015) show that generalised autoregressive

score updates improve the local Kullback–Leibler divergence between the true data density

and the model density. They further show that any observation-driven update with similar

optimality properties needs to be ‘score-equivalent’. The properties of the maximum
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likelihood estimator are considered in Blasques, Koopman, and Lucas (2014).

Koopman, Lucas, and Scharth (2016) show that for univariate models with time-

varying parameters, score-driven models offer similar predictive accuracy as parameter-

driven models. This is notable, as in many cases estimation of parameter-driven models

is more involved and may be less stable.2 Based on Koopman, Lucas, and Scharth (2016)

and Blasques, Koopman, and Lucas (2015) there is now clear theoretical and empirical

evidence that univariate score-driven models outperform other observation-driven models.

It is thus interesting to see if score-driven models perform similarly well in a multivariate

setting. To that end, modelling the term structure of interest rates offers a great challenge

to the score-driven method. Although conceptually simple, the DNSMs we consider in

this paper involve time-varying parameters both in means and variances, and consider

both multivariate Gaussian and multivariate Student’s t distributions.

3. Analysing score-driven dynamic Nelson-Siegel models

We present a general formulation of the dynamic Nelson-Siegel model of interest rates

within the setting of score-driven models. Various extensions of the baseline model that

vary in complexity are considered. We start with the baseline model and gradually re-

lax the assumptions, in particular the restrictive distributional assumptions. We treat

ten model specifications within the setting of score-driven models and three specifica-

tions within the setting of parameter-driven models. These last three models are mainly

adopted as benchmarks since our focus is on the score-driven models.

The dynamic Nelson-Siegel model is due to Diebold and Li (2006) and Diebold, Rude-

busch, and Aruoba (2006) who modify the parsimonious model of Nelson and Siegel (1987)

as

yit (τi) = f1,t + f2,t

(
1 − e−λτi

λτi

)
+ f3,t

(
1 − e−λτi

λτi

− e−λτi

)
+ εit, (5)

where yit(τi) denotes the interest rate (yield) for maturity τi observed at time t . The εit

are assumed to be drawn independently from a Gaussian distribution. The Nelson-Siegel

model expresses the yield curve as a non-linear function of the parameter λ and an affine

2For instance, when estimation is done through importance sampling, stability may be affected by the
choice of the importance density.
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transformation of three other factors, f t = (fL,t, fS,t, fC,t). Diebold and Li (2006) also

interpret the three factors as the level, slope, and curvature of the yield curve. This is

because the long-term interest rates are explained only by the level factor, fL,t, since the

loadings on other factors tend to 0 as the maturity τi increases. The other two factors

correspond to the short-term and medium-term interest rates. The parameter λ defines

what constitutes a ‘medium-term’ yield in this model as it specifies for which maturity the

loading on fC,t is maximised. All four parameters can be estimated in a static setting to

fit a single cross-section of interest rates. The static Nelson-Siegel model is still routinely

employed by central banks and other financial market practitioners on a daily basis; see

for instance Christensen, Diebold, and Rudebusch (2011).

Diebold, Rudebusch, and Aruoba (2006) further show that it is possible to model

the evolution in time of the latent factors by assuming that they evolve stochastically

and follow a vector autoregressive process of order one. By assuming normality and

homoskedasticity of disturbances they recast the full model into a linear Gaussian state

space model, where the latent factors follow a vector autoregressive process as in eq. (2).

The statistical treatment for this model, including likelihood evaluation, can be based on

the Kalman Filter and related algorithms.

3.1. Single volatility factor

Many extensions of the baseline model of Diebold, Rudebusch, and Aruoba (2006)

are considered and treated in the literature. Each extension or generalisation typically

aims to relax one or more assumptions underlying the baseline model. For example,

Koopman, Mallee, and Van der Wel (2010) introduce a conditional heteroskedasticity

specification for the measurement disturbances and specify a stochastically time-varying

process for the rate of decay parameter λ. Mesters, Schwaab, and Koopman (2014) allow

the disturbances to come from a fat-tailed distribution with stochastically time-varying

variances. For both of these extensions, the volatility is supposed to be driven by a single,

common factor.

We consider these cases and specifically follow Mesters, Schwaab, and Koopman in

modelling log-volatility as a time-varying process using score-driven dynamics as in eq. (3).
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We define the following DNSM with a time-varying log-volatility factor

yt = Λf t + εt, εt ∼ t (0, Σ, ν) (6)

Λ =
[
1 1−e−λτ

λτ
1−e−λτ

λτ
− e−λτ

]
, Σ = diag

(
σ2

1eht , . . . , σ2
peht

)
,

where yt is a p × 1 vector of interest rates. For expositional purposes, we assume that the

disturbances are drawn from a Student’s t distribution with ν degrees of freedom and scale

matrix Σ. The results for the Gaussian distribution follow by considering the limiting

case as ν tends to infinity. Depending on the distributional assumptions we label the two

models as ‘GAS t 1TV’ and ‘GAS N 1TV’ to reflect the type of distribution (Normal, ‘N’, or

Student’s t, ‘t’) as well as the number of volatility factors (‘1TV’; one time-varying). To

identify the latent volatility factor, it is necessary to fix one of the loadings σ2
i at 1. The

volatility factor is then scaled up or down for the remaining maturities. We impose the

normalisation restriction on the one-year maturity. Hence we set σ2
12m = 1. This choice

does not affect the results of our study.

The score and Fisher information matrix in this case are given by

∇f t
= νp [ν + kt]−1 Λ⊺Σ−1εt, Iff = νp [νp + 2]−1 Λ⊺Σ−1Λ, (7)

∇ht = 1
2
(
νp [ν + kt]−1 kt − p

)
, Ihh = 1

2
[νp + 2]−1 νp, (8)

where kt = ε⊺
t Σ−1εt, νp = ν + p, and Ifh = 0. We provide details of the derivation in

Appendix B. For the normal distribution, this simplifies to

∇f t
= Λ⊺Σ−1εt, Iff = Λ⊺Σ−1Λ, (9)

∇ht = 1
2

(kt − p) , Ihh = p

2
. (10)

For the estimation process, we impose block diagonality on the static parameter matrices

A and B in the score transition eq. (3). Hence we do not capture spillovers from the

volatility factors to the level equation, or vice versa. Although, as is shown in Creal,

Koopman, Lucas, and Zamojski (2015), block diagonality of the A matrix can be relaxed

to allow for leverage effects, in this study we have opted for sparsity to facilitate easier

comparisons between the different models.
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As a benchmark we consider a parameter-driven specification of the model in eq. (6).

Given that the model is both non-Gaussian and non-linear we estimate it sequentially

using importance sampling methods as in Mesters, Schwaab, and Koopman (2014). To

that end, we follow Shephard and Pitt (1997) and Durbin and Koopman (1997) and apply

Kalman filtering and smoothing methods to an approximating linear Gaussian state space

model. The paths of time-varying mean and volatility factors are obtained through signal

extraction, see Durbin and Koopman (2012) for details. We refer to this model as ‘IS

t 1TV’.

3.2. Individual volatility factors and dense covariance matrices

In a parameter-driven framework, increasing the size of the state vector to have more

volatility factors is computationally demanding. Even with a single volatility factor, the

model is both non-Gaussian and non-linear in the state variables. It implies that the log-

likelihood function—for a given parameter vector—needs to be evaluated using Monte

Carlo methods such as importance sampling. Modelling multiple volatilities implies that

we cannot easily perform the integration sequentially as in Mesters, Schwaab, and Koop-

man (2014), since we have a multivariate state (or signal) and typically analyse long time

series. On the one hand, the numerically accelerated importance sampling method of

Koopman, Lucas, and Scharth (2015), which is both computationally and numerically

efficient in larger samples, requires a univariate signal for a feasible implementation. On

the other hand, more feasible Monte Carlo estimation methods as developed by Shep-

hard and Pitt (1997) and Durbin and Koopman (1997) for a multivariate signal, do not

necessarily perform well in long samples.

In contrast, extensions to non-normal distributions, time-varying yield curve coeffi-

cients f t, and time-varying volatilities are relatively easy to achieve in score-driven models.

We extend the multivariate heavy-tailed model for time-varying volatilities and correla-

tions of Creal, Koopman, and Lucas (2011) to also account for the latent level, slope, and

curvature in the mean. For this purpose we consider the model

yt = Λf t + εt, εt ∼ t (0, Σ, ν) (11)

Λ =
[
1 1−e−λτ

λτ
1−e−λτ

λτ
− e−λτ

]
, Σ = DtRDt, (12)
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where Dt is the time-varying, diagonal standard deviation matrix and R is the static

correlation matrix. The ith diagonal element of D2
t is defined as d2

it and is specified

by d2
it = ehit where hit is a time-varying process. Hence we have imposed a positive

standard deviation by modelling log-volatility directly as in the previous section. To

obtain further parsimony, we limit our attention to two settings. First, we assume that

the disturbances are uncorrelated, that is R = I. The resulting model as indicated by

‘GAS t pTV’ (Student’s t-distributed errors and p volatility factors). Second, we relax

the independence assumption and assume an equicorrelation structure for the correlation

matrix, that is R = (1 − ρ)I + ριι⊺. The off-diagonal parameter −(p − 1)−1 < ρ < 1

can be estimated jointly with the other static parameters in θ . We refer to this model

as ‘GAS t pTV+c’. We obtain two similar models (‘GAS N pTV’ and ‘GAS N pTV+c’) by

replacing the Student’s t distribution in eq. (11) by a multivariate Normal distribution

with covariance matrix Σ.

We provide the score and Fisher information matrices for the scale matrix Σ. These

results can be adopted directly when the disturbances are uncorrelated. Only minor

modifications are needed to account for the equicorrelation matrix. For details we refer

to Creal, Koopman, and Lucas (2011). We have

∇f t
= ν̄Λ⊺Σ−1εt, (13)

Iff = 2ν̃Λ⊺Σ−1Λ, (14)

∇v(Σ) = K
(1

2
ΣΨ⊺(Σ−1 ⊗ Σ−1) vec(ν̄εε⊺ − Σ)

)
, (15)

Iv(Σ) v(Σ) = K (Σ) K (Ω + bc⊺) K (Σ) , (16)

where v(Σ) denotes the half vectorization of Σ and only contains entries from the lower

triangle, ⊗ denotes the Kronecker product, Ψ is the duplication matrix so that Ψ v(Σ) =

vec(Σ), see Abadir and Magnus (2005) for further details, Ψ+ = (Ψ⊺Ψ)−1 Ψ⊺, νp = ν +p,

kt = ε⊺
t Σ−1εt, ν̄ = νp[ν + kt]−1, ν̃ = νp[2(νp + 2)]−1, Ω = ν̃Ψ⊺(Σ−1 ⊗ Σ−1)Ψ, Ω−1 =

ν̃−1Ψ+(Σ ⊗ Σ)Ψ⊺
+, c = Ψ⊺ vec(Σ−1), b = [2(νp + 2)]−1c. The matrix function K(·)

selects rows (and columns) that correspond to the position of diagonal entries of Σ in its

half vectorization.3 The three resulting matrices in eq. (16) are square and it is possible

3Given that we assume no correlation between disturbances, all other rows and columns contain only
zeros.
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to compute the inverse Fisher information efficiently by applying the Sherman–Morrison

formula. For ν̄ = 1 and ν̃ = 1
2 , we obtain scores and the Fisher information for the

Gaussian distribution.

Although we model the dynamics of the mean factors and the volatility factors jointly,

we do not allow for interactions between them. Thus, and as in Section 3.1, we impose

block diagonality on the matrix coefficients A and B in the transition eq. (3). See Ap-

pendix D for details on the full structure of matrices A and B. We model the blocks

corresponding to the dynamics of the regression parameter f t in both matrices as dense.

The blocks corresponding to the volatility dynamics (hit) are not diagonal, as is typically

done; see Creal, Koopman, and Lucas (2011). Instead, we allow spillovers from the volatil-

ity dynamics from one maturity into other maturities. To avoid an excessive number of

parameters, we restrict the off-diagonal elements of the blocks in A and B corresponding

to the hits to be the same, resulting in only 2 additional parameters compared to the

diagonal case. Note, that these off-diagonal elements would be estimated close to 0 if

there is no commonality in the volatilities.

These are the most complicated model specifications under consideration. Neverthe-

less, further extensions are still possible and easy to implement given that the Fisher

information matrix for multivariate t distribution is well documented, see (Mitchell, 1989;

Arellano-Valle, 2010; Creal, Koopman, and Lucas, 2011). In particular, it is possible

to add time-varying skewness or to let the dependence parameter ν change over time.

Furthermore, inclusion of macroeconomic variables to directly measure impact of the

monetary policy is also feasible. In this case, the mean and/or variance factors would be

affected by changes in the monetary policy either directly or through the score and the

matrix A in eq. (3), see Creal, Koopman, Lucas, and Zamojski (2015).4 It is also possi-

ble to incorporate no-arbitrage into our score-driven Nelson-Siegel models by extending

them in a similar fashion to Christensen, Diebold, and Rudebusch (2011). We leave such

extensions for future work.

4In Creal, Koopman, Lucas, and Zamojski (2015), I propose to use this approach to easily incorporate
the leverage effect in their score-driven GMM model with conditional heteroskedasticity. The leverage
effect is captured by allowing the time-varying volatility to react to the scores of the static parameters.

13



3.3. Homoskedasticity

The dynamic Nelson-Siegel models are not well grounded in economic theory or in

finance. In particular, the most commonly used specifications do not exclude arbitrage

opportunities. Note, however, that there exist extensions to the standard Nelson-Siegel

model which incorporate the no-arbitrage assumption, see, e.g., Filipović (1999); Diebold,

Piazzesi, and Rudebusch (2005) or Christensen, Diebold, and Rudebusch (2011). In the

yield curve literature DNSMs are regarded as misspecified models. It is unlikely that the

model provides an appropriate description of the data-generating process. Still, the DNSM

is highly popular among practitioners. This is probably due to its empirical performance.

Even the most simple version of the DNSM produces good empirical results despite the

assumptions of normally distributed errors with static diagonal variance matrices.

Our most basic specification is obtained when errors for all maturities are normally

independently distributed with a unit scale matrix, that is Σ = σ2I. This elementary

version of the DNSM is considered in Durbin and Koopman (2012) and we label it as ‘1C’

(one, constant volatility factor). Depending on the distributional assumption and the

estimation method we have ‘GAS t 1C’, ‘GAS N 1C’, and ‘KF 1C’; where model ‘KF 1C’ is

Gaussian and estimated with the Kalman Filter.

We also consider DNSMs with Σ = diag(σ2
1, . . . , σ2

p) which we refer to as ‘GAS t pC’,

‘GAS N pC’, and ‘KF pC’. In case of normal errors and parameter-driven dynamics for

the latent mean factors (i.e. ‘KF pC’), the model reduces to the specification of Diebold,

Rudebusch, and Aruoba (2006). We use ‘KF pC’ as our primary benchmark model. Under

the assumption of normal errors, the two models can be treated by the Kalman Filter

without violating its optimality properties.

Table 1 presents a summary overview of all thirteen model-method combinations which

we consider in our current study.

5When estimating, we set the degrees of freedom at 50 in order to ensure stability of the algorithm.
Similar restrictions are also imposed by Mesters, Schwaab, and Koopman (2014).
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Table 1

Models
This table presents a summary view of the models we consider in this paper. PD and SD
denote parameter-driven and score-driven, respectively. Number of parameters is given under
the assumption that 11 maturities are modelled.

Symbol Type Estimated with Parameters Fat tails Heteroskedasticity Correlation
‘KF 1C’ PD Kalman Filter 23
‘KF pC’ PD Kalman Filter 33

‘IS t 1TV’ PD Importance sampling 33 ✓5 ✓
‘GAS N 1C’ SD GAS 23
‘GAS N pC’ SD GAS 33
‘GAS t 1C’ SD GAS 24 ✓
‘GAS t pC’ SD GAS 34 ✓

‘GAS N 1TV’ SD GAS 35 ✓
‘GAS t 1TV’ SD GAS 36 ✓ ✓
‘GAS N pTV’ SD GAS 57 ✓
‘GAS t pTV’ SD GAS 58 ✓ ✓

‘GAS N pTV+c’ SD GAS 58 ✓ ✓
‘GAS t pTV+c’ SD GAS 59 ✓ ✓ ✓

4. Simulation study

In this section we present results of a considerable Monte Carlo study. We investigate

how well the different model specifications perform depending on the underlying data-

generating process.

4.1. Design of the study

We consider 12 different data-generating processes which reflect the diversity of the

models in Section 3. In particular, we vary if (and how many) volatility factors are part

of the specification. In the simulated world, yields are generated by one of the following

models: (i) a Gaussian state-space model, (ii) a non-Gaussian state-space model, (iii)

Gaussian errors in the observation equations combined with deterministic paths for the

factors, and (iv) same as (iii) but with fat-tailed disturbances.

To limit our attention to relevant scenarios, we simulate data based on the empirical

results we discuss later in Section 5. To that end, in the ‘deterministic paths’ DGPs we

use the filtered paths that we obtained for the U.S. data between 2007 and 2012. We

specifically choose this period to include both a period of relative calm and the financial

crisis. Other parameters are also in line with what we see in the empirical applications.

Through this design we can both compare the performance of different models and more-
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Table 2

Data-generating processes
The table contains a summary of all data-generating processes which we consider in the simula-
tion study. Degrees of freedom and the value of the true correlation parameter are in parentheses
when applicable. Other parameter values and paths of time-varying parameters are based on
the results we obtain in Section 5 for the U.S. data with the ‘reference model’.

Symbol DGP Distribution Fat
tai

ls
(d

f)

Hete
ros

ke
da

sti
cit

y

Corr
ela

tio
n (ρ)

Reference model

‘Det t pTV’ Deterministic paths Student’s t ✓(30) ✓ ✓(0.35) ‘GAS t pTV’
‘Det N pTV’ Deterministic paths Normal ✓ ✓(0.35) ‘GAS N pTV’
‘Det t pTV’ Deterministic paths Student’s t ✓(30) ✓ ‘GAS t pTV’
‘Det N pTV’ Deterministic paths Normal ✓ ‘GAS N pTV’
‘Det t 1TV’ Deterministic paths Student’s t ✓(30) ✓ ‘GAS t 1TV’
‘Det N 1TV’ Deterministic paths Normal ✓ ‘GAS N 1TV’

‘Sto t30 1TV’ Stochastic paths Student’s t ✓(30) ✓ ‘KF pC’ + ‘GAS t 1TV’
‘Sto t50 1TV’ Stochastic paths Student’s t ✓(50) ✓ ‘KF pC’ + ‘GAS t 1TV’

‘Sto N 1TV’ Stochastic paths Normal ✓ ‘KF pC’ + ‘GAS t 1TV’
‘Sto t30 1C’ Stochastic paths Student’s t ✓(30) ‘KF pC’
‘Sto t50 1C’ Stochastic paths Student’s t ✓(50) ‘KF pC’

‘Sto N 1C’ Stochastic paths Normal ‘KF pC’

over investigate whether the empirical results in Section 5 are biased in any way. We

label the set of DGPs (iii) and (iv) as ‘Det’.

We also consider a number of state-space data-generating processes. For this set of

DGPs, parameter values are adopted from results obtained with the Kalman Filter (‘KF

pC’) for the mean factors. In some cases, we introduce heteroskedasticity with a common

volatility factor.

Note that in all cases, the GAS models are misspecified in the sense that, at the very

least, the GAS transition equation is not correctly specified vis-à-vis the data-generating

process. By contrast, we do consider cases for which the parameter-driven models are

correctly specified and can be expected to perform well. A summary of the data-generating

processes with their reference models is shown in Table 2.

For each data-generating process we construct 1,500 samples of length T=1,050. This

corresponds to around 4 years of daily data. We simulate data for 11 maturities: 3, 6,

9, 12, 18, 24, 36, 60, 84, 108, and 120 months. The estimation of our models is based

on the first 1,000 observations for which we compute measures of in-sample fit. We then

use the remaining 50 observations to assess the models’ out-of-sample and forecasting
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Table 3

AIC for different models
The table contains median values of AIC relative to values achieved by ‘KF pC’. Higher is better.
Cases where AIC is higher than for the benchmark model are in bold.

AIC ‘GA
S

t
pT

V+
c’

‘GA
S

N
pT

V+
c’

‘GA
S

t
pT

V’

‘GA
S

N
pT

V’

‘GA
S

t
1T

V’

‘GA
S

N
1T

V’

‘GA
S

t
pC

’

‘GA
S

t
1C

’

‘GA
S

N
pC

’

‘GA
S

N
1C

’

‘IS
t

1T
V’

‘KF
pC

’

‘KF
1C

’

‘KF
pC

’ va
lue

‘Det t pTV+c’ 1.23 1.20 1.00 0.95 0.94 0.90 0.86 0.82 0.72 0.66 1.25 1.00 0.91 -23328.67
‘Det N pTV+c’ 1.22 1.20 0.99 0.95 0.93 0.90 0.85 0.81 0.72 0.66 1.21 1.00 0.91 -23899.32
‘Det t pTV’ 1.26 1.23 1.15 1.13 1.09 1.08 0.98 0.94 0.86 0.78 1.25 1.00 0.91 -20499.55
‘Det N pTV’ 1.46 1.39 1.33 1.24 1.23 1.16 1.08 1.03 0.82 0.07 1.42 1.00 0.21 -16977.44
‘Det t 1TV’ 1.20 1.20 1.09 1.09 1.09 1.08 0.95 0.90 0.86 0.80 1.26 1.00 0.93 -20381.89
‘Det N 1TV’ 1.20 1.20 1.09 1.07 1.08 1.06 0.94 0.89 0.84 0.78 1.25 1.00 0.93 -19799.62
‘Sto N 1TV’ 1.13 1.12 1.00 0.99 1.01 0.99 0.97 0.92 0.89 0.83 1.23 1.00 0.93 -21173.79
‘Sto t30 1TV’ 1.14 1.13 1.02 1.00 1.02 1.00 0.99 0.93 0.90 0.83 1.24 1.00 0.93 -20520.13
‘Sto t50 1TV’ 1.13 1.13 1.00 1.00 1.01 1.00 0.98 0.93 0.90 0.83 1.24 1.00 0.93 -20790.07
‘Sto t30 1C’ 0.97 0.96 0.87 0.86 0.87 0.87 0.87 0.87 0.87 0.86 1.02 1.00 1.00 -25552.36
‘Sto t50 1C’ 0.97 0.96 0.87 0.86 0.87 0.87 0.87 0.87 0.86 0.86 1.02 1.00 1.00 -25815.85
‘Sto N 1C’ 0.96 0.96 0.87 0.86 0.87 0.86 0.87 0.86 0.86 0.86 1.01 1.00 1.00 -26185.63

performance.

4.2. In-sample performance

We start our analysis by looking at the models’ in-sample performance using model

selection criteria. In Figure 1 and Table 3 we compare different method-model combina-

tions based on the achieved values of log-likelihood and the Akaike information criterion.

For clarity of exposition we limit our attention in Figure 1 to a selection of representative

data-generating processes. Table 3 contains all results. Note, that the choice of AIC over

BIC is not material in this case as the results are qualitatively similar.

In each sub-figure of Figure 1, we show the 7 observation-driven models on the left and

the 3 parameter-driven models on the right. Within each group we further sort the models

based on their complexity. The more complicated and flexible models are presented on

the left and the simple models on the right. The data-generating processes are divided

into two groups depending on whether volatility is time-varying (panels on the left) or not

(right). We present both the median values and the corresponding interquartile ranges.

In Table 3, we show median values of the AIC for all cases normalised by the values

achieved with the benchmark parameter-driven model.

We first consider the AIC performance of models for the DGPs with time-varying
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Figure 1

Log-likelihood and information criteria
This figure compares values of log-likelihood (top) and AIC (bottom) for different methods and
a selection of DGPs. We divide the DGPs into two groups depending on whether volatility
is time-varying (left) or not (right). We sort method-model combinations according to their
complexity with the most complex models on the left. Error-bars reflect interquartile ranges.
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variances (left-hand panels). We find that similarly complex models have a similar AIC

performance. For example, the AIC of ‘KF 1C’ and ‘GAS N 1C’ are very similar, even

though these models are based on entirely different modelling paradigms. We also see

that increasing the complexity of the models generally improves the model’s in-sample fit

while accounting for the number of parameters. Allowing for more heterogeneity across the

variances and for fat-tailedness in a setting with constant variances results in substantially

better performance in terms of lower AIC values despite the substantial increase in the

number of parameters. For models with a deterministic factor path, the improvements

continue all the way (adding fat-tails, adding more volatility components, adding cross-

sectional equicorrelations). For the state space DGP with only one volatility component

(‘Sto t30 1TV’), the largest increases in performance are obtained by relaxing the fixed

volatility assumption. Beyond that, there is a fairly flat performance, irrespective of

whether we allow for fat tails or more volatility components. The latter is intuitive as the
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DGP only has one volatility component. There is a further increase in performance (and

decrease in AIC) if we allow for cross correlation.6

The performance of the parameter-driven models, which is visualised by points on

the right-hand side of Figure 1, confirms that more complexity helps the model to better

fit the data, even after accounting for the number of parameters. The parameter-driven

models with fixed variances are clearly too restrictive. The fat-tailed state space model

with a single time-varying variance component clearly outperforms the other state space

specifications. Note, that estimation of this model is challenging and time-consuming.

For the homoskedastic DGPs (‘Sto t30 1C’, ‘Sto N 1C’), all GAS models perform

roughly equally well, except the ones with non-zero cross correlation. In particular and

as expected, there is hardly any difference in log-likelihood performance between models

with constant and with time-varying volatilities, respectively. Similarly unsurprising is

the better in-sample performance of the three state space models (‘IS t 1TV’, ‘KF pC’,

‘KF 1C’) which are relatively less mis-specified and reflect the parameter-driven nature of

the DGPs.

We further find that the largest differences in performance are obtained for short

maturities and during spells of high volatility. We attribute these differences to a varying

precision with which the unobserved components can be filtered from the data using the

different methods. In high-volatility regimes, the GAS models yield more precise estimates

of particularly the slope and the curvature of the yield curve compared to the state space

specifications with constant variances and thin-tailed distributions. For details on the

differences in cross-sectional and time-series performance, see Appendix C.

To conclude the analysis of in-sample performance we look at the root-mean-square

error and the mean absolute percentage error. The errors are computed based on the fit

of the full yield curve and averaged both in the cross-section and in the time dimension.

6 The decrease in AIC and the corresponding increase in log-likelihood for the models with an equicorre-
lation structure (‘GAS N pTV+c’, ‘GAS t pTV+c’) is better understood by looking at the results for the ho-
moskedastic DGPs (right-hand panels). Note that the DGPs generate contemporaneous cross-correlation
between all yields through the common factor structure. As the GAS models are observation-driven, they
only account for the time t−1 predicted part of the contemporaneous cross-correlation, and therefore miss
part of it. Allowing the pricing errors in the GAS model to be cross-correlated using the equicorrelation
structure alleviates this aspect of model misspecification and increases the likelihood. This is clearly seen
in the right-hand panels by the drop in AICs from the models with zero correlation to the models with
an equicorrelation structure.
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Figure 2

In-sample RMSE
This figure compares values of average (both in time and in cross-section) root-mean-square
errors for different methods and a selection of DGPs. We divide the DGPs into two groups
depending on whether volatility is time-varying (left) or not (right). We sort method-model
combinations according to their complexity with the most complex models on the left. Error-
bars reflect interquartile ranges.
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The results for the two measures of fit are qualitatively similar and, for brevity, we focus

on the RMSEs in Figure 2. The figure contains median values of RMSEs across all Monte

Carlo simulations along with interquartile ranges for a selection of DGPs. See Table A.1

in Appendix A for full results.

At this level of aggregation it appears that—for the most part—all considered models

offer similar in-sample fit as measured by the RMSE. This is despite the vast differences in

AIC and log-likelihood as discussed earlier based on Figure 1 and Table 3. It is, however,

not surprising given that the largest differences in tracking performance are obtained

for (i) the short maturities and (ii) in high-volatility regimes, both of which are under-

represented in the aggregation. There are two exceptions. First, the two GAS models

with fat-tailed disturbances and constant variances offer a considerably worse fit if the

underlying DGP includes time-varying variances. This is due to the fact, that adjusting

the static variances to better match the brief crisis period would decrease the tracking

performance in the majority of the sample. Instead the optimiser opts, given the provided

flexibility, to grossly underestimate the degrees of freedom at below 10.0 when the true

value is set at 30.0. This effectively classifies the whole crisis period where volatility

clustering manifests itself as a prolonged series of outliers.

By contrast, the parameter-driven model with a single common volatility factor and

fat-tailed disturbances (‘IS t 1TV’) produces significantly lower RMSE regardless of whether
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the DGP includes time-varying volatilities or not. This is due to the fact that we obtain

the paths of the factors through signal extraction which involves some smoothing and im-

proves in-sample fit. Alternatively, it is also possible to filter out factor paths by means

of particle filtering in which case we expect the performance to deteriorate to the levels

exhibited by the other filters.7

Particularly interesting is the comparable performance of the very simple parameter-

driven models and the most complex model we consider, i.e., ‘GAS t pTV+c’,8 for the

‘Det t pTV+c’ data-generating process. In this case, the GAS model is much closer to

the true DGP than the ‘KF’ parameter-driven models, but they all perform similarly well.

This is evidence of how much flexibility even the simple models have to fit the data

by adjusting the decay parameter, λ, and decreasing the persistence of the slope and

curvature factors.9 As we discuss next, this is due to over-fitting as the out-of-sample

performance is considerably weaker.

4.3. Out-of-sample performance (one-step-ahead predictions)

We now consider the out-of-sample performance of the considered models. For this

purpose we take the estimated values of parameters based on the first 1,000 observations in

each replication and compute recursively 50 one-step-ahead predictions in the remainder

of the sample. 10 For each specification we obtain 825,000 one-period-ahead forecasts out-

of-sample (1,500 replications × 50 out-of-sample observations × 11 yields). We compute

the RMSEs and MAPEs and similarly to our in-sample analysis we average the results

both across time and in the cross-section. Table 4 contains the results.

Even at this level of aggregation substantial differences in performance are clearly

visible among the competing specifications. We do not observe differences in out-of-sample

performance for DGPs with constant variances. However, the farther away the data-
7 Note, that estimation of this model with importance sampling is cumbersome and time-consuming.

The use of particle filters given the large scale nature of this Monte Carlo study was not feasible.
8Student’s t distributed errors with time-varying variances and equicorrelation.
9Evidence of the latter can be seen in Figure Figure C.2 of Appendix C.

10This choice of sample length is arbitrary, but we have verified that slightly increasing or decreasing
the number of observations does not change the results qualitatively. However, a significant increase in
the number of observations in the out-of-sample analysis might affect the results. This is because all of
the score-driven models are always mis-specified in the Monte Carlo simulations and, as Nelson (1992)
points out, mis-specified filters may generate worse long-term forecasts even if they make consistent one-
step-ahead predictions. We find our sample length choice to be a reasonable compromise between the
short-term consistency and real-world requirements.
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Table 4

Out-of-sample RMSE and MAPE
We present median values of root-mean-square errors and mean absolute percentage errors rel-
ative to values achieved by ‘KF pC’. Lower is better. We mark outperforming cases in bold.

Panel A: Root-mean-square error for the yields
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N
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’

‘GA
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N
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’

‘KF
pC

’

‘KF
1C

’

‘KF
pC

’ va
lue

‘Det t pTV+c’ 0.97 0.96 0.98 0.96 1.00 0.96 1.08 1.08 0.97 0.98 1.00 1.00 0.05
‘Det N pTV+c’ 0.97 0.97 0.98 0.96 1.00 0.97 1.09 1.08 0.97 0.98 1.00 1.00 0.05
‘Det t pTV’ 0.99 0.99 0.98 0.98 0.99 0.98 1.08 1.08 0.99 1.00 1.00 0.99 0.05
‘Det N pTV’ 0.97 1.00 0.97 0.99 1.00 0.99 1.10 1.10 1.00 1.10 1.00 1.67 0.05
‘Det t 1TV’ 1.01 1.00 1.00 1.00 1.00 1.00 1.09 1.10 1.01 1.02 1.00 1.01 0.05
‘Det N 1TV’ 1.01 1.01 1.00 1.00 1.00 1.00 1.09 1.10 1.01 1.01 1.00 1.01 0.06
‘Sto N 1TV’ 1.01 1.00 1.01 0.99 1.01 0.99 1.03 1.03 1.00 1.01 1.00 1.01 0.07
‘Sto t30 1TV’ 1.00 0.99 1.01 0.99 1.01 0.99 1.02 1.03 1.00 1.01 1.00 1.01 0.07
‘Sto t50 1TV’ 1.01 1.00 1.02 0.99 1.01 0.99 1.02 1.03 1.00 1.01 1.00 1.01 0.07
‘Sto t30 1C’ 1.01 1.01 1.01 1.00 1.01 1.00 1.01 1.01 1.00 1.00 1.00 1.00 0.09
‘Sto t50 1C’ 1.01 1.01 1.01 1.00 1.01 1.00 1.01 1.01 1.00 1.00 1.00 1.00 0.09
‘Sto N 1C’ 1.01 1.01 1.01 1.00 1.01 1.00 1.01 1.01 1.00 1.00 1.00 1.00 0.09

Panel B: Mean absolute percentage error for the yields
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’

‘KF
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’ va
lue

‘Det t pTV+c’ 0.86 0.87 0.87 0.86 0.92 0.89 1.12 1.09 0.92 0.94 1.00 0.97 0.04
‘Det N pTV+c’ 0.86 0.88 0.88 0.87 0.92 0.90 1.12 1.09 0.93 0.95 1.00 0.97 0.04
‘Det t pTV’ 0.90 0.91 0.90 0.91 0.94 0.93 1.15 1.11 0.97 0.98 1.00 0.96 0.04
‘Det N pTV’ 0.86 0.93 0.87 0.92 0.95 0.95 1.18 1.13 0.99 1.26 1.00 2.22 0.04
‘Det t 1TV’ 1.00 1.00 0.99 0.99 1.00 0.99 1.16 1.18 1.01 1.03 1.00 1.02 0.05
‘Det N 1TV’ 1.00 1.00 1.00 1.00 1.00 1.00 1.15 1.18 1.01 1.03 1.00 1.02 0.06
‘Sto N 1TV’ 1.01 1.00 1.01 1.00 1.01 0.99 1.03 1.04 1.00 1.01 1.00 1.01 0.02
‘Sto t30 1TV’ 1.00 0.98 1.01 0.99 1.01 0.99 1.02 1.03 1.00 1.01 1.00 1.01 0.02
‘Sto t50 1TV’ 1.01 1.00 1.02 0.99 1.01 1.00 1.03 1.04 1.00 1.01 1.00 1.01 0.02
‘Sto t30 1C’ 1.01 1.01 1.01 1.00 1.01 1.00 1.01 1.01 1.00 1.00 1.00 1.00 0.02
‘Sto t50 1C’ 1.01 1.04 1.01 1.00 1.01 1.00 1.01 1.01 1.00 1.00 1.00 1.00 0.02
‘Sto N 1C’ 1.01 0.98 1.01 1.00 1.01 1.00 1.01 1.01 1.00 1.00 1.00 1.00 0.02

generating process is from satisfying the homoskedasticity, normality, and independence

assumptions, the better is the performance of score-driven models as compared to the

traditional parameter-driven dynamic Nelson-Siegel model of Diebold, Rudebusch, and

Aruoba (2006). The most complex score-driven model which we consider, ‘GAS t pTV+c’,

generates 14% more accurate forecasts. Note that these models offered comparable in-

sample fit.

We find that the score-driven models are better equipped to track the slope and—

especially—the curvature factors if the traditional assumptions are violated. Unlike the
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Table 4

Out-of-sample RMSE and MAPE (continued)

Panel C: Root-mean-square error for the curvature factor
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’

‘KF
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’ va
lue

‘Det t pTV+c’ 0.84 0.86 0.87 0.86 0.93 0.91 1.14 1.12 0.97 0.94 1.00 0.99 0.16
‘Det N pTV+c’ 0.84 0.86 0.86 0.86 0.93 0.91 1.13 1.12 0.96 0.94 1.00 0.99 0.16
‘Det t pTV’ 0.84 0.86 0.84 0.85 0.91 0.91 1.12 1.11 0.98 0.95 1.00 1.00 0.17
‘Det N pTV’ 0.81 0.87 0.81 0.86 0.91 0.93 1.18 1.16 1.00 1.87 1.00 4.81 0.17
‘Det t 1TV’ 0.93 0.94 0.94 0.95 0.93 0.94 1.11 1.13 1.00 1.03 1.00 1.05 0.19
‘Det N 1TV’ 0.95 0.96 0.95 0.97 0.95 0.96 1.15 1.17 1.01 1.04 1.00 1.06 0.20
‘Sto N 1TV’ 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.99 1.01 1.05 1.00 1.02 0.24
‘Sto t30 1TV’ 0.96 0.96 0.97 0.96 0.97 0.97 0.96 0.99 1.00 1.04 1.00 1.02 0.24
‘Sto t50 1TV’ 0.97 0.96 0.98 0.96 0.97 0.97 0.96 0.99 1.00 1.04 1.00 1.02 0.24
‘Sto t30 1C’ 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.26
‘Sto t50 1C’ 0.99 0.99 1.00 1.00 1.00 0.99 1.00 1.00 0.99 0.99 1.00 1.00 0.26
‘Sto N 1C’ 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.26

differences in in-sample performance these improvements are present for all but the longest

maturities. To give a better insight into the scale of out-performance, we present the

RMSEs and the MAPEs for short-term interest rates in Table A.2 (appendix) where the

improvement reaches 25%. The improvement in fit stems here from much higher precision

with which the GAS models track the slope and the curvature out-of-sample, see Panel

C of Table 4. The results in Table 4 and Table A.2 further reinforce our conclusion that

allowing for any form of heteroskedasticity produces the largest improvements in fit and

forecasting performance. Whether to relax the independence assumption and the choice of

the number of volatility factors depends on which maturities on the yield curve are of most

interest. Relaxing the normality assumption seems to produce only slight improvements

while substantially increasing the complexity of the model.

4.4. Forecasting performance (n-period-ahead predictions)

We conclude the simulation study by looking at performance of the different method-

model specifications in producing n-period-ahead forecasts. In the case of the benchmark

parameter-driven models, generating such forecasts is as easy as simply supplying the

Kalman Filter with data augmented by missing values to match the desired forecast hori-

zon. The Kalman Filter produces minimum MSE forecasts and their associated standard

errors in a routine fashion, see Durbin and Koopman (2012, Ch. 4.11) for details.
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In the observation-driven framework, one-step-ahead forecasts are obtained as a byprod-

uct of estimation. This is because values of dynamic parameters in this class of models are

perfectly predictable one-step-ahead given past information. However, this also implies

that in the standard approach it is not possible to obtain confidence intervals for these

short-term predictions, see e.g. Pascual, Romo, and Ruiz (2006). Confidence intervals

can be, however, obtained for misspecified models as proposed in Zamojski (2016). The

performance of one-period-ahead forecasts is discussed earlier in the previous subsection.

Here, we focus on longer-horizon predictions.

Longer-horizon forecasts in the observation-driven framework can be obtained through

simulations by treating the adopted score-driven model as if it was the data-generating

process. For instance, given the parameter estimates at time t = T , one can simulate M

sample paths for yi,T +1, . . . , yi,T +n and compute statistics of interests: mean and standard

deviation or median and appropriate quantiles. The quality of forecasts depends not only

on how well the model matches the true DGP but also on the number of performed simu-

lations. This is problematic in our setting for two reasons. First, the DNSMs themselves

are clearly misspecified both in the simulation setting and in the empirical applications

which may decrease their forecasting performance over longer periods; though, according

to Nelson (1992), such misspecification does not affect consistency of the one-period-ahead

forecast. Secondly, performing such simulations for the more complex models we consider

is computationally expensive to the point of being prohibitive for our Monte Carlo study.

To address this issue we propose a less computationally intensive procedure for ob-

taining n-period-ahead forecasts which we call bootcasting. The bootcasting algorithm

takes the following five steps:

Step 1: Estimate the scores, {∇t}, with the chosen score-driven filter and normalise them

by pre-multiplying them by the appropriate square-root-inverse Fisher informa-

tion matrix to create a series of raw updating steps.

Step 2: Generate M series of forecasting raw steps by sampling blocks of size n with

replacement from among the raw steps from Step 1.

Step 3: Re-scale the full block of forecasting raw steps by pre-multiplying them with the

time, t = T , square-root of the Fisher information matrix.

Step 4: For each bootcasting sample apply the score-driven transition equation to obtain
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n-period ‘bootcasts’ of the time-varying parameters.

Step 5: Forecasts are obtained as the median (or mean) of the empirical distribution

function of the time-varying parameters. The confidence intervals are obtained

by taking appropriate quantiles of the EDF and can be computed to arbitrary

precision by increasing M .

The motivation for this procedure stems from the statistical properties of the GAS

steps, st, which are zero in expectation and have a constant unit variance if obtained

with a square-root inverse of the Fisher information matrix (Creal, Koopman, and Lucas,

2013). This allows us to resample blocks of such steps. It follows that, if the square-root

inverse was used in estimation, Step 1 and Step 3 can be omitted. If the scaling matrix

is chosen to be the inverse Fisher information matrix, the procedure can be expressed as:

sT +k = I−1
T |T −1 I

1
2
T |T −1 I− 1

2
j|j−1∇j︸ ︷︷ ︸

Normalise︸ ︷︷ ︸
Re-scale︸ ︷︷ ︸

GAS update as in eq. (3)

= I− 1
2

T |T −1I
− 1

2
j|j−1∇j, (17)

sT +k+1 = I− 1
2

T |T −1I
− 1

2
j+1|j∇j+1, (18)

where j is a randomly chosen offset such that T − n ≥ j ≥ 1.

The use of quantiles to obtain the final forecasts and confidence intervals around them

is motivated by the fact that such measures are invariant under monotone transforma-

tions. Thus, bootcasted time-varying parameters can be used to produce forecasts for the

observations as well. In the context of term-structure modelling with DNSMs and GAS

it is sufficient to only bootcast the mean factors, f t.

There are benefits of this procedure. First, we do not sacrifice quality of forecasts

which we verify for a selection of DGPs.11 At the same time, we are able to avoid both

inverting large, dense matrices in, e.g., eq. (16) at every step of the recursion as well as

sampling from multivariate distributions. For M = 2000 simulations and depending on

the model complexity, bootcasting is 2–10 times faster than the traditional procedure.

These gains are present even for the simplest models we consider. A further benefit is
11The untabulated results are available upon request.
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that we are able to account for the misfit due to misspecification. For instance, if we

observe a structural break in the data, the bootcasting procedure will account for the

possibility of such an event occurring in the future at the observed, realised frequency.

We now proceed to compare forecasting performance between the competing specifi-

cations. In Figure 3, we present the results for two score-driven models, ‘GAS t pTV+c’

and ‘GAS t 1TV’, which allow for time-varying volatilities and fat-tailed disturbances.

Forecasts of up to ten periods ahead are obtained with the aforementioned ‘bootcast-

ing’ procedure. As a benchmark, we use the classical dynamic Nelson-Siegel model of

Diebold, Rudebusch, and Aruoba (2006, ‘KF pC’) for which the forecasts are produced by

the Kalman Filter. In the figure we focus on a single heteroskedastic DGP (panels on the

left hand side) and one with constant variances (on the right). We report average values

of bias, RMSEs, and MAPEs of the forecasts as well as span of their confidence intervals.

First, we consider the DGP with time-varying variances and cross-correlation. The

Kalman Filter appears to have an advantage for short-term forecasts with smaller bias,

as well as lower RMSE and MAPE. This is likely due to over-fitting as discussed earlier.

The relative performance of this model deteriorates quickly as the forecast horizon is

extended. By the end of the 10-period horizon, forecasts based on the ‘KF pC’ model

clearly have the highest MAPEs. The RMSEs and values of bias show similar, albeit,

weaker deterioration.

We find that ‘GAS t pTV+c’ performs considerably better than the simpler ‘GAS t 1TV’

model and produces forecasts with smaller bias, RMSEs, and MAPEs for all horizons.

This is due to the fact that in this case, ‘GAS t pTV+c’ fits (feature-wise) much better

with the analysed DGP.

The results in Figure 3 are averaged across all maturities. In Figure 4, we instead

focus on the short-term maturities. The patterns which we saw for all data are even

more pronounced here. This is not surprising, given our previous results on in-sample

and out-of-sample fit. In particular, the difference in forecast accuracy obtained with

the score-driven models and the benchmark parameter-driven model rises to 5 percentage

points by the end of the 10-period horizon.

Finally and as expected, we do not observe any significant differences in forecast-
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Figure 3

Forecasting performance: all maturities
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Figure 4

Forecasting performance: short-term maturities
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ing performance between models with constant and with time-varying volatilities for ho-

moskedastic DGPs.

Given the good performance of the GAS model in a controlled setting, we can now

proceed to analyse the empirical data. This is done in the next section.

5. Empirical application

In this section we bring the discussed models to real-world, daily data from two coun-

tries. As is common in the literature, we first look at the the U.S. market. Our results can,

thus, be directly compared to those of, e.g., Diebold and Li (2006) or Diebold, Rudebusch,

and Aruoba (2006). We contribute to this literature by studying model performance at

the high, daily frequency and relaxing distributional assumptions. We also look at Poland

which is a less economically and financially developed country. The choice of this dataset

creates some interesting questions and challenges. For one, the Polish market is less liquid

which is reflected by longer and more pronounced periods of high volatility. Moreover,

note that the least restrictive model which we consider requires estimation of around 60

static (hyper-)parameters. The size of the model is not an important issue for the West-

ern economies, especially the U.S., where monthly data is available for 50 years or more.

However, low availability of data is one of the major obstacles in using recent advances

in methods in developing countries, including in Poland. Given that even in the most

parsimonious DNSM there are more than 30 parameters to be estimated, using short time

series may result in the methods over-fitting the data.

To further motivate our choice of daily datasets, we note that with high frequency

data it is possible to identify the channels through which the monetary policy affects

the yield curve and thus agents’ expectations. This is because we observe the potentially

affected yields without much delay after policy-induced shocks. As Mesters, Schwaab, and

Koopman (2014) argue, this is especially important after the collapse of Lehman Brothers

in 2008, as policy interventions were being undertaken on a weekly (or even day-by-day)

basis. The impact of the monetary policy can be established through an event study or by

extending a chosen model to include macroeconomic variables as discussed in Section 3.12

We use U.S. and Polish zero-coupon yields as provided by ICAP (Datastream) for 11
12Nonetheless, we also look at monthly and weekly data in Section 5.1.
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maturities: 3, 6, 9, 12, 18, 24, 36, 60, 84, 108, and 120 months. The data is reported

at daily frequency. Due to differences in availability of the data, the sample period is

1997–2015 (4815 observations) for U.S. and 2007–2015 (2262 observations) for Poland.13

The yield curves are derived based on a number of financial instruments. In particular,

the short-term rates are based on LIBOR (WIBOR for Poland), while the mid- and long-

term zeros are constructed based on forward rate agreements and swaps respectively.14

For clarity of exposition we focus on four maturities in most of the tables and figures, i.e.,

on 6-, 12-, 60-, and 120-month yields.

Table 5 contains summary statistics for the two datasets. For each maturity we report

mean, standard deviation, minimum, 25-th percentile, median, 75-th percentile, max-

imum, skewness, and kurtosis. We also show autocorrelation coefficients for a range of

lags (from one day to two years). From the table we see that the yield curves in both mar-

kets are on average upward sloping, although the pattern is less pronounced in Poland.

Additionally, the volatilities are decreasing with maturity. This is why we need more

factors to explain dynamics on the short-term-end of the yield curve. Given the high

frequency of the data it is not surprising that the yields are highly persistent. The per-

sistence decreases in time, although the slower the longer the maturity. The table reveals

that the data proxy for the curvature factor is the least persistent.

In Panel A of Figure 5, we present the dataset around the time of the 2008 financial

crisis. There are notable similarities in evolution of interest rates both in the U.S. and in

Poland. We again see that the short-term yields are more volatile and less persistent than

the longer maturities. For either country, it is visually apparent that the yields are driven

by unobserved components as yields tend to move in the same direction. Although we do

not model the two data sets jointly, co-movement of maturities between countries suggests

13 Based on the information from Thomson Reuters, ICAP started reporting the data for Poland in
2007 and provided a two-year ‘instant’ history. The data in the period 2005–2007 is of a noticeably lower
quality and we thus remove it from the sample.

14 We note that commercially available data on Polish yields starts, at the earliest, in 2001, and even
then the liquidity of many (even benchmark) bonds is uneven at the beginning of the period. For this
reason, other studies of the term structure of interest rates in Poland also construct the yield curves using
interbank interest rates, see, e.g., Marciniak (2006); Kliber (2009) and Dziwok (2013). As a robustness
check in Section 5.2, we look at the Fama-Bliss zero-coupon yields which are based on U.S. sovereign
bonds. We find that the resulting filtered paths of the latent factors are very similar to those estimated
using ICAP data. Given the lower availability of high quality data based on government bonds for Poland
and the lack of substantial differences in this robustness analysis, we use the ICAP data for both markets
for the sake of consistency.
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Table 5

Summary statistics
Our data consists of daily zero-coupon yields in Poland and the U.S. at maturities of 3, 6, 9, 12,
18, 24, 36, 60, 84, 108, and 120 months. For each maturity we report mean, standard deviation,
minimum, 25-th percentile, median, 75-th percentile, maximum, skewness, and kurtosis (Pear-
son). We also show autocorrelation coefficients at four lags: one day (1d), a month (1m), a year
(1y), and two years (2y). The table contains results for data proxies of the latent mean factors.
The longest maturity, 120-month, is adopted as a proxy for the level. Slope is approximated
by the spread between the 120-month and 3-month yields. Proxy of the curvature factor is
computed as the difference between the spread associated with 3-month and 24-month yields
and the spread associated with the 24-month and 120-month yields.

Panel A: U.S., sample period is 1997–2015, 4815 observations

Maturity Mea
n

St
d.

de
v.

Min. Q25 Med
ian

Q75 Max
.

Sk
ew

ne
ss

Kur
tos

is

1d
ACF

1m
ACF

1y
ACF

2y
ACF

3m 2.78 2.37 0.22 0.34 1.89 5.44 7.15 0.35 1.49 1.000 0.99 0.62 0.11
6m 2.81 2.37 0.22 0.40 2.03 5.41 7.44 0.36 1.53 1.000 0.99 0.63 0.12
9m 2.86 2.36 0.23 0.46 2.19 5.35 7.62 0.36 1.56 1.000 0.99 0.64 0.14
12m 2.91 2.35 0.25 0.52 2.38 5.32 7.72 0.35 1.59 0.999 0.99 0.65 0.16
18m 3.05 2.30 0.30 0.68 2.70 5.25 7.82 0.31 1.63 1.000 0.99 0.68 0.22
24m 3.19 2.25 0.34 0.87 2.98 5.20 7.87 0.27 1.67 1.000 0.99 0.70 0.28
36m 3.46 2.14 0.42 1.27 3.43 5.24 7.96 0.18 1.74 0.999 0.98 0.73 0.36
60m 3.91 1.92 0.73 1.96 4.00 5.42 7.95 0.04 1.83 0.999 0.98 0.75 0.45
84m 4.26 1.76 1.14 2.54 4.40 5.62 8.00 -0.02 1.92 0.999 0.97 0.74 0.50
108m 4.50 1.66 1.44 2.97 4.67 5.78 8.02 -0.06 1.98 0.999 0.97 0.74 0.54
120m (Level proxy) 4.60 1.62 1.57 3.12 4.78 5.84 8.07 -0.08 2.00 0.999 0.97 0.73 0.56
Slope proxy 1.82 1.29 -1.12 0.73 1.79 2.88 4.55 0.04 1.93 0.999 0.95 0.27 -0.42
Curvature proxy -1.01 0.85 -4.05 -1.69 -1.03 -0.29 1.31 0.11 2.27 0.996 0.90 0.27 0.01

Panel B: Poland, sample period is 2007–2015, 2262 observation

Maturity Mea
n

St
d.

de
v.

Min. Q25 Med
ian

Q75 Max
.

Sk
ew

ne
ss

Kur
tos

is

1d
ACF

1m
ACF

1y
ACF

2y
ACF

3m 4.14 1.31 1.51 2.87 4.21 4.95 6.93 0.02 2.43 0.997 0.97 0.20 -0.14
6m 4.21 1.33 1.48 2.86 4.33 4.95 6.92 -0.02 2.40 0.997 0.97 0.24 -0.12
9m 4.18 1.39 1.58 2.72 4.35 4.95 6.90 -0.12 2.34 0.999 0.97 0.29 -0.10
12m 4.15 1.32 1.48 2.81 4.42 4.88 7.10 -0.20 2.37 0.999 0.97 0.31 -0.11
18m 4.18 1.31 1.46 2.96 4.56 4.90 7.05 -0.33 2.38 0.999 0.97 0.38 -0.06
24m 4.23 1.32 1.51 3.07 4.64 4.97 6.98 -0.46 2.37 0.999 0.96 0.44 -0.02
36m 4.33 1.29 1.50 3.29 4.73 5.23 6.88 -0.60 2.37 0.999 0.96 0.48 0.01
60m 4.48 1.23 1.54 3.60 4.87 5.47 6.74 -0.74 2.48 0.999 0.95 0.48 0.03
84m 4.57 1.16 1.63 3.82 4.94 5.52 6.58 -0.84 2.65 0.999 0.95 0.46 0.03
108m 4.63 1.10 1.73 3.95 4.98 5.52 6.39 -0.93 2.82 0.999 0.95 0.44 0.03
120m (Level proxy) 4.65 1.07 1.78 4.00 4.99 5.51 6.31 -0.95 2.87 0.998 0.95 0.44 0.04
Slope proxy 0.51 0.85 -2.23 -0.06 0.64 1.27 2.14 -0.56 2.66 0.992 0.90 -0.53 -0.10
Curvature proxy -0.33 0.60 -2.20 -0.77 -0.41 0.16 1.08 -0.10 2.49 0.982 0.82 0.15 0.22
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Figure 5

Zero-coupon yields
Our data consists of daily zero-coupon yields in Poland and the U.S. at maturities of 3, 6, 9,
12, 18, 24, 36, 60, 84, 108, and 120 months. We present a sub-sample of the daily data between
2007 and 2010 for a limited number of maturities in Panel A. Panel B contains full yield curves
for a selection of months. In Panel B, we aggregate the data and report median values alongside
interquartile ranges.

Panel A: Evolution in time of yields for chosen maturities
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Panel B: Cross-section of yields for a selection of months
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that the factor structure is global in nature. Having said that, there are notable differences

between the more economically developed U.S. and Poland. Short-term interest rates in

the U.S. are considerably lower and the U.S. yield curve tends to be more steeply upward

sloping not only on average but also during the financial crisis. By comparison, the Polish

yield curve is much flatter.

Across time there has been more variation in the level of short-term interest rates in

the U.S. The country has experienced many periods in which its yield curve was inverted

or inverted with a hump (1998, 2000/2001, 2006, 2007/2008, 2008/2009). Apart from

the financial crisis, in which there was a clear distinction between short-term and other

interest rates in Poland, the yield curve was inverted for about a year starting in 2012.

32



Table 6

In-sample and out-of-sample fit for empirical data
The table contain estimation results for the dynamic Nelson-Siegel models considered in this
paper. We fit the models to U.S. and Polish daily interest rates. We report the average (per
observation) contributions to the log-likelihood (LL), AIC, and BIC measures. For clarity of
exposition, we report RMSE and MAPE values multiplied by 100.0.

Panel A: U.S., sample period is 1997–2015, 4815 observations

All maturities Short-term maturities

In-sample Out-of-sample In-sample Out-of-sample

LL AIC BIC RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

‘GAS t pTV+c’ 21.79 -43.57 -43.49 35.35 14.06 4.20 2.91 28.79 11.59 1.58 2.60

‘GAS N pTV+c’ 20.99 -41.96 -41.88 35.21 14.70 3.35 2.35 28.19 12.63 1.47 2.41

‘GAS t pTV’ 16.36 -32.70 -32.62 9.16 3.74 3.15 2.29 7.81 2.93 1.46 2.56

‘GAS N pTV’ 15.84 -31.65 -31.57 8.29 3.44 3.10 2.39 6.89 2.60 1.47 2.46

‘GAS t 1TV’ 15.25 -30.48 -30.43 8.20 3.46 3.28 2.67 6.72 3.10 1.66 2.88

‘GAS N 1TV’ 14.85 -29.68 -29.63 7.91 3.43 3.17 2.61 6.56 3.25 1.61 2.72

‘GAS t pC’ 13.68 -27.34 -27.29 9.61 3.73 3.40 2.76 9.13 3.68 1.96 3.34

‘GAS t 1C’ 12.98 -25.96 -25.93 9.30 3.91 3.41 2.75 9.12 4.38 1.98 3.50

‘GAS N pC’ 12.81 -25.60 -25.55 7.78 3.72 3.11 2.42 6.71 3.74 1.63 2.84

‘GAS N 1C’ 12.13 -24.25 -24.22 7.84 3.85 3.09 2.37 7.26 4.27 1.64 2.89

‘IS t 1TV’ 18.35 -36.68 -36.63 5.29 3.29 4.05 3.06

‘KF pC’ 15.47 -30.93 -30.89 7.89 3.71 3.18 2.55 6.72 3.65 1.73 3.05

‘KF 1C’ 12.94 -25.88 -25.85 7.99 3.90 3.28 2.62 7.47 4.45 1.78 3.18

Table 6 summarises the results of the empirical study.15 We fit 13 models to the

interest rate data from both countries. The results are, for the most part, in line with

those in the Monte Carlo study. In particular, we see that relaxing the assumptions of

normality, homoskedasticity, and independence leads to huge improvements in in-sample

fit as measured by the AIC and BIC. Between the simplest score-driven model and the

most complex we are able to almost double the log-likelihood and even after accounting

for the presence of additional parameters it is clear that the more complex models are

preferred.

For the U.S. data the improvements are also clearly visible in the overall reduction

of RMSEs and MAPEs, both in-sample and out-of-sample. This is with exception of

the two models which allow for cross-sectional correlations in pricing errors for which

the improvement in AIC/BIC is accompanied by a substantial deterioration of in-sample

15Parameter estimates along with standard errors are reported in Appendix D.
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Table 6

In-sample and out-of-sample fit for empirical data (continued)

Panel B: Poland, sample period is 2007–2015, 2262 observations

All maturities Short-term maturities

In-sample Out-of-sample In-sample Out-of-sample

LL AIC BIC RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

‘GAS t pTV+c’ 18.41 -36.76 -36.61 18.66 3.19 9.73 4.02 24.22 4.50 17.26 7.65

‘GAS N pTV+c’ 17.20 -34.35 -34.21 18.01 3.08 10.60 4.37 26.65 4.69 18.28 8.04

‘GAS t pTV’ 15.61 -31.16 -31.01 9.41 1.51 8.48 3.55 13.18 2.15 13.77 6.18

‘GAS N pTV’ 15.08 -30.10 -29.96 8.72 1.46 7.90 3.34 12.95 2.16 13.60 6.16

‘GAS t 1TV’ 14.66 -29.29 -29.20 8.95 1.51 8.38 3.56 12.42 2.14 13.56 6.13

‘GAS N 1TV’ 14.27 -28.51 -28.42 8.53 1.47 7.90 3.35 12.41 2.13 13.43 6.10

‘GAS t pC’ 13.17 -26.30 -26.22 10.54 1.59 9.01 3.83 12.84 2.13 13.96 6.40

‘GAS t 1C’ 12.69 -25.35 -25.29 12.45 1.74 10.03 4.17 13.87 2.19 15.87 6.99

‘GAS N pC’ 12.27 -24.52 -24.43 8.42 1.47 8.34 3.52 12.34 2.13 14.41 6.38

‘GAS N 1C’ 10.99 -21.95 -21.89 8.44 1.47 8.54 3.62 11.76 2.00 13.99 6.22

‘IS t 1TV’ 18.62 -37.22 -37.14 8.91 1.41 16.48 2.75

‘KF pC’ 15.44 -30.85 -30.77 11.64 1.87 7.93 3.43 17.82 3.03 13.21 6.08

‘KF 1C’ 11.11 -22.20 -22.15 8.71 1.51 8.98 3.79 11.83 2.02 14.38 6.38

RMSEs and MAPEs. As discussed before, the equicorrelation structure allows these

models to capture the part of contemporaneous shifts in the yield curve which are not

predictable one period ahead. The surprising results might be due to the fact that the

volatility of the latent factors, in particular of the level factor, is dominating the variance

of pricing errors and contributes to the very high estimates of correlation we obtain in

these models.

If we do not relax the independence assumption, these results are fully in line with

our conclusions from the Monte Carlo study. Overall, the ‘GAS N pTV’ and ‘GAS t pTV’

models offer the best out-of-sample performance (based on one-period-ahead predictions)

for the U.S. data. In the case of Poland, the results are inconclusive in the short-horizon

setup we consider here.

In Figure 6, we show the filtered paths of the latent factors while Figure 7 contains

a selection of fitted interest rates for the U.S. data. Analogous figures for Poland can be

found in Appendix A. We present the results for two sub-periods. The plots on the left-

hand side contain the factors and yields around the 2008 financial crisis. On the right are
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Figure 6

Filtered latent factors, U.S.
This figure contains filtered paths of level, slope, curvature, as well as volatility paths for a se-
lection of maturities. The column on the left contains results around the 2008 financial crisis
while the right column presents end of our sample period. We use daily data and the sample
period is 1997–2015.
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Figure 7

Estimated yields, U.S.
We plot fitted data for a range of maturities as estimated with three of our models. The column
on the left contains results around the 2008 financial crisis while the right column presents end
of our sample period. We use daily data and the sample period is 1997–2015.
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the most recent results at the end of our sample period. Overall, we see that allowing for

time-varying volatilities and fat-tailed disturbances has a considerable impact on the three

mean factors. Especially affected is the curvature factor which becomes more persistent.

The bottom panels of Figure 6 further suggest that the Kalman Filter estimated variances

are too high at the end of the sample.

Finally, we find that allowing for multiple time-varying volatility factors leads to new

insights about the dynamics of pricing errors in the DNSMs. If we allow for only a single

common volatility factor, the long-term maturities are estimated to have higher volatilities

than the short-term ones. This is also true for the models with multiple volatility factors,

but only in non-crisis periods. In high-volatility regimes, these models suggest a reversal of

this ranking with the short-term maturities having considerably higher variances of pricing

errors. With the benefit of hindsight, we can attribute this phenomenon to the short-term

increase of counter-party risk during the crisis period which would predominantly affect

the short-term maturities. During the financial crisis regulators had to step in to provide

liquidity to the interbank market. A relatively high frequency DNSM with time-varying

volatilities of pricing errors may then be a useful tool for a central bank in gauging the

effectiveness of such interventions.

5.1. Robustness to changes in sampling frequency

In this section, we compare estimation results obtained for three different sampling

frequencies: monthly, weekly, and daily. The lower frequency series are obtained by

resampling the daily data.

We first focus on the ‘GAS t pTV’ model. In Figure 8, we compare estimation results

obtained for the three different sampling frequencies. Here, we use the daily U.S. data

from ICAP. Setting aside the different degree of path smoothness, it is evident from the

figure that there are no qualitative differences between results obtained for the three

datasets. Additionally, filtered paths of the mean factors are also similar quantitatively,

i.e., the paths for monthly data are only a heavily smoothed version of the paths we

obtain at the daily frequency. We also find evidence for conditional heteroskedasticity

and fat-tailedness of pricing errors at lower frequencies. In particular, the estimated fat-

tailedness is significantly higher for the monthly data. The variances of monthly pricing
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errors increase in the same periods as for the daily data, but the periods of high volatility

are estimated as considerably longer. Our results are in line with Koopman, Mallee, and

Van der Wel (2010) and Mesters, Schwaab, and Koopman (2014) who also show that

volatilities of pricing errors are time-varying at lower sampling frequencies.

In Figure 9 we study the impact of sampling frequency on the log-likelihood and the

AIC for all the score-driven models we consider in the paper. For clarity, we present av-

erage (per observation) values of these measures of in-sample fit. The general pattern is

similar regardless of the sampling frequency: allowing for more features in the model leads

to improvements in fit. However, the relative importance of the features depends on the

sampling frequency. At the daily frequency, relaxing the normality assumption leads to

only small benefits. The largest improvements are obtained by allowing for heteroskedas-

ticity in pricing errors. Based on our results, the lower the sampling frequency, the more

important it is to allow for non-Gaussian errors. This is despite the fact, that even at the

low, monthly frequency we see improvement in both the AIC and the log-likelihood after

allowing for some form of conditional heteroscedasticity. The importance of allowing for

fat-tailedness errors in the monthly case may be partly due to the lagging nature of score-

driven models, in that the the filter has too little time to adjust the conditional variance

leaving many under- or over-scaled residuals. The results point to an interesting trade-off

where working with relatively high-frequency data may allow us to keep the normality

assumption if we allow for heteroskedasticity; while for the low-frequency data we need

to relax both assumptions.

Ultimately, our ability to filter out the time-varying variance of pricing errors depends

on the magnitude of the changes and, indeed, on how frequently we sample the data.

At some very low frequency there might not be enough persistence in the time series

for the method to pick up the time-variation in volatility even if the time-varying model

is the closest to the true DGP. This is to say, the simpler models may be able to fit

the data equally well by increasing unconditional variance and/or increasing the fat-

tailedness of the distribution of pricing errors. A question then remains, which of these

models have the potential to bring the most insight about the data and, in particular,

what are the economic channels through which the yield curve is affected. Under the

assumption, that the true, high-frequency DGP includes time-varying volatility (e.g., in
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Figure 8

Impact of sampling frequency on the filtered factors
This figure contains filtered paths of the level, slope, and curvature, as well as volatility paths for
a selection of maturities estimated with the ‘GAS t pTV’ model. In Panel A, we present results
for the daily U.S. data which we use in the remainder of the paper. Panels B and C contain
results for weekly and monthly data. In all cases, we use the full sample period from 1997 to
2015 to estimate the model. We report the results for 2007–2010.

Panel A: Daily observations, ν = 26.38
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Panel B: Weekly observations, ν = 24.42
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Panel C: Monthly observations, ν = 18.04
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Figure 9

Impact of sampling frequency on in-sample fit
This figure compares values of log-likelihood (left) and AIC (right) for different score-driven
models fitted to empirical data. We present results for the U.S. and Polish data. Due to
different sample lengths, we report the average contributions to the log-likelihood and the AIC
of each observation. Panel A, B, and C show results for daily, weekly, and monthly sampling
frequencies. We sort models according to their complexity within the most complex models on
the left.

Panel A: Daily data. Sample length is 4815 and 2262 for for U.S. and Poland.
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Panel B: Weekly data. Sample length is 964 and 453 for for U.S. and Poland.
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Panel C: Monthly data. Sample length is 223 and 105 for for U.S. and Poland.
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the form of stochastic volatility), modelling low frequency data as homoskedastic would

lead to overestimating the variance of the pricing errors in good states, i.e., most of the

time historically. Allowing for fat-tailed pricing errors would mean admitting defeat in

modelling the term structure in crises with just some improvement in the good states. As

interest rates are observable at higher frequencies, in both cases, we then leave valuable

information on the table. Furthermore, there are reasons to believe that mis-specified

filters of the type we discuss in the paper are better able to track the true underlying

processes as sampling frequency is increased, see, e.g., Nelson (1992) or Nelson and Foster

(1994).

Naturally, various market participants may want to model more than just the term

structure of interest rates as we do in this paper. For instance, central banks may be

interested in including in the model some time-series of macroeconomics variables that

are observable at lower frequencies. In this case, it is still possible to use ‘high-frequency’

Nelson-Siegel models and we refer to the rapidly growing literature on modelling mixed-

frequency datasets, see e.g., Ghysels, Santa-Clara, and Valkanov (2004); Andreou, Ghy-

sels, and Kourtellos (2010); Ghysels (2016), or Blasques, Koopman, Mallee, and Zhang

(2016).

5.2. Impact of dataset choice

In this section we investigate whether sample selection impacts the empirical results.

Our main empirical analysis uses daily data from ICAP which relies on interbank interest

rates to construct the short-end of the yield curve. This dataset is interesting as it

contains high-frequency data for a range of countries. As a robustness check, we now

consider the standard unsmoothed Fama-Bliss zero-coupon yields obtained based on the

CRSP unsmoothed Fama and Bliss (1987) forward rates. Unlike the ICAP data, the

Fama-Bliss dataset is available only for U.S. and is based on sovereign bonds. It is also

widely used in the literature, e.g., by Diebold and Li (2006) or Diebold, Rudebusch,

and Aruoba (2006). For consistency, we study yields with the same maturities as in the

remainder of Section 5. We fit the ‘GAS t pTV’ model to data from 1997–2009 and from

both datasets. For the sake of brevity, we focus on the ‘GAS t pTV’ model with (possibly)

fat-tailed pricing errors and individual latent volatility factors. Figure 10 contains filtered

paths of level, slope, curvature, as well as volatility paths for the 6-, 12-, and 120-month
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yields.

The results are very similar overall. The only exception is the level factor which is

consistently estimated higher for the ICAP data. This is unsurprising given that interbank

interest rates include a premium to account for counter-party risk. Notably, however, even

for this factor the extracted dynamics are similar. The choice of dataset here does not

significantly affect estimates of hyper-parameters. For instance, the degrees of freedom

(ν) are estimated at 10.64 and 11.54 for the ICAP and Fama-Bliss datasets respectively.

Similarly, the difference between estimates of the decay parameters, λ, are small: 0.081

for ICAP and 0.075 for Fama-Bliss.

6. Conclusions

In this paper, we have studied in-sample, out-of-sample, and forecasting performance

of dynamic yield curve models with score-driven time-varying parameters. We consid-

ered a sequence of score-driven models that gradually relax the restrictive distributional

assumptions which are usually imposed on dynamic yield curve models and which are

cumbersome to relax in the parameter-driven framework. Specifically, we extend the

model with time-varying volatility structures, possibly driven by common components.

Furthermore, apart from having disturbances from a multivariate Gaussian distribution,

we also allow disturbances to come from fat-tailed distributions, namely from the mul-

tivariate Student’s t distribution. Finally we allow the pricing errors to be correlated in

the cross-sectional dimension.

Based on an extensive Monte Carlo study, we find that the generalised autoregres-

sive score models of Creal, Koopman, and Lucas (2013) produce similar in-sample fit as

correctly specified state-space models while offering superior out-of-sample performance

when the aforementioned distributional assumptions are violated.

Having more features in the model appears to benefit the time-series (yields) which

load on multiple latent mean factors or on latent factors about which there is little infor-

mation in the cross-section. In the context of interest rates, this means that the complex

score-driven models offer an improved in-sample and considerably better out-of-sample

fit for short-term maturities. Similarly the latent curvature factor which determines the

yields in the short- and medium-run is tracked with higher precision. We find this to
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Figure 10

ICAP vs. Fama-Bliss
This figure contains filtered paths of the level, slope, and curvature, as well as volatility paths
for a selection of maturities estimated with the ‘GAS t pTV’ model for two datasets. We consider
both monthly data obtained from ICAP and Fama-Bliss zero-coupon yields. Sample period for
estimation is 1997-2009. We report the results for 2006–2009.
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be especially true in periods when the time-varying volatilities are considerably above or

below their unconditional means.

We have also proposed a novel forecasting procedure which can be used to quickly and

efficiently construct multiple-period-ahead predictions and corresponding out-of-sample

confidence intervals for score-driven models.

Finally, we have studied the dynamics of yield curves in the U.S. and in Poland. Our

overall conclusion from this analysis is that by increasing the complexity of the model, we

obtain considerable improvements in the fit. The largest improvements are obtained by

allowing for heteroskedasticity in pricing errors. Also, by allowing for multiple volatility

factors, we provide new insights as to what drives the dynamics of the yield curve in

high-volatility regimes. Relaxing the normality assumption does not lead to significant

benefits.
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A. Supplementary tables and figures

Table A.1

In-sample RMSE and MAPE in the simulation study
We present median values of root-mean-square errors and mean absolute percentage errors rel-
ative to values achieved by ‘KF pC’. Lower is better. We mark outperforming cases in bold.

Panel A: Root-mean-square error
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‘Det t pTV+c’ 0.99 0.98 1.02 0.98 1.03 0.99 1.13 1.12 0.98 0.99 0.65 1.00 1.03 0.12
‘Det N pTV+c’ 0.99 0.98 1.01 0.98 1.03 0.99 1.14 1.13 0.98 0.99 0.65 1.00 1.03 0.12
‘Det t pTV’ 1.02 1.01 1.01 1.00 1.02 1.01 1.15 1.13 1.00 1.01 0.79 1.00 1.03 0.12
‘Det N pTV’ 1.03 1.03 1.03 1.01 1.05 1.01 1.19 1.19 1.00 1.04 0.87 1.00 1.16 0.17
‘Det t 1TV’ 1.03 1.01 1.02 1.00 1.02 1.00 1.33 1.31 1.00 1.01 0.77 1.00 1.01 0.12
‘Det N 1TV’ 1.03 1.01 1.04 1.00 1.04 1.00 1.33 1.31 1.00 1.01 0.77 1.00 1.01 0.12
‘Sto N 1TV’ 1.01 1.01 1.01 1.00 1.01 1.00 1.01 1.02 1.00 1.01 0.77 1.00 1.01 0.11
‘Sto t30 1TV’ 1.01 1.01 1.01 1.00 1.01 1.00 1.01 1.02 1.00 1.01 0.78 1.00 1.01 0.11
‘Sto t50 1TV’ 1.01 1.01 1.01 1.00 1.01 1.00 1.01 1.02 1.00 1.01 0.77 1.00 1.01 0.11
‘Sto t30 1C’ 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 1.00 1.00 0.09
‘Sto t50 1C’ 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 1.00 1.00 0.09
‘Sto N 1C’ 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.66 1.00 1.00 0.09

Panel B: Mean absolute percentage error
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‘Det t pTV+c’ 0.97 0.96 0.98 0.96 1.00 0.97 1.07 1.07 0.97 0.98 0.57 1.00 1.02 0.03
‘Det N pTV+c’ 0.97 0.96 0.98 0.96 1.00 0.97 1.07 1.07 0.97 0.99 0.58 1.00 1.01 0.03
‘Det t pTV’ 0.99 0.99 0.99 0.98 1.00 0.99 1.08 1.07 1.00 1.01 0.73 1.00 1.01 0.03
‘Det N pTV’ 1.00 1.02 1.00 0.99 1.02 1.01 1.11 1.11 1.00 1.13 0.77 1.00 1.43 0.03
‘Det t 1TV’ 1.01 1.01 1.01 1.00 1.01 1.00 1.13 1.13 1.00 1.02 0.75 1.00 1.01 0.03
‘Det N 1TV’ 1.01 1.01 1.02 1.00 1.02 1.00 1.14 1.15 1.00 1.02 0.75 1.00 1.01 0.03
‘Sto N 1TV’ 1.01 1.00 1.01 1.00 1.01 1.00 1.02 1.03 1.00 1.01 0.72 1.00 1.01 0.02
‘Sto t30 1TV’ 1.01 1.02 1.01 1.00 1.01 1.00 1.02 1.03 1.00 1.01 0.77 1.00 1.01 0.02
‘Sto t50 1TV’ 1.01 1.02 1.01 1.00 1.01 1.00 1.02 1.03 1.00 1.01 0.76 1.00 1.01 0.02
‘Sto t30 1C’ 1.01 0.98 1.01 1.00 1.01 1.00 1.01 1.01 1.00 1.00 0.70 1.00 1.00 0.02
‘Sto t50 1C’ 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.68 1.00 1.00 0.02
‘Sto N 1C’ 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 1.00 1.00 0.02
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Table A.2

Out-of-sample RMSE and MAPE in the simulation study:
short-term maturities

We present median values of root-mean-square errors and mean absolute percentage errors rel-
ative to values achieved by ‘KF pC’. Lower is better. We mark outperforming cases in bold.

Panel A: Root-mean-square error
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‘Det N pTV+c’ 0.79 0.81 0.80 0.81 0.85 0.83 1.15 1.09 0.87 0.93 1.00 0.96 0.02
‘Det t pTV’ 0.84 0.87 0.85 0.86 0.90 0.90 1.23 1.16 0.96 0.99 1.00 0.92 0.02
‘Det N pTV’ 0.82 0.90 0.83 0.89 0.91 0.93 1.28 1.20 0.98 1.33 1.00 1.86 0.02
‘Det t 1TV’ 0.95 0.95 0.96 0.95 0.97 0.96 1.29 1.35 1.01 1.07 1.00 1.07 0.02
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‘Sto t30 1TV’ 1.01 1.00 1.02 1.00 1.02 1.00 1.03 1.06 1.00 1.04 1.00 1.05 0.05
‘Sto t50 1TV’ 1.02 1.00 1.03 1.00 1.02 1.00 1.04 1.06 1.01 1.04 1.00 1.06 0.05
‘Sto t30 1C’ 1.01 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.08
‘Sto t50 1C’ 1.01 1.02 1.01 1.00 1.01 1.00 1.01 1.01 1.00 1.00 1.00 1.00 0.08
‘Sto N 1C’ 1.01 1.01 1.01 1.00 1.01 1.00 1.01 1.01 1.00 1.00 1.00 1.00 0.08
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‘Det N pTV+c’ 0.76 0.79 0.78 0.78 0.83 0.81 1.18 1.11 0.86 0.91 1.00 0.96 0.05
‘Det t pTV’ 0.82 0.85 0.83 0.84 0.88 0.87 1.26 1.18 0.94 0.97 1.00 0.91 0.05
‘Det N pTV’ 0.81 0.89 0.82 0.88 0.91 0.92 1.31 1.24 0.97 1.31 1.00 2.06 0.05
‘Det t 1TV’ 0.95 0.95 0.95 0.95 0.97 0.96 1.33 1.38 1.00 1.07 1.00 1.07 0.06
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‘Sto t30 1C’ 1.02 1.01 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.03
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Figure Figure A.1

Filtered latent factors, Poland
This figure contains filtered paths of level, slope, curvature, as well as volatility paths for a se-
lection of maturities. The column on the left contains results around the 2008 financial crisis
while the right column presents end of our sample period. We use daily data and the sample
period is 2007–2015.
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Figure Figure A.2

Estimated yields, Poland
We plot fitted data for a range of maturities as estimated with three of our models. The column
on the left contains results around the 2008 financial crisis while the right column presents end
of our sample period. We use daily data and the sample period is 2007–2015.
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B. Scores and Fisher information

Here we provide derivations for the score vectors and Fisher information matrices in

a multivariate Student’s t distribution. The Fisher information matrix for multivariate

t distribution is well studied (Mitchell, 1989; Arellano-Valle, 2010; Creal, Koopman, and

Lucas, 2011). In what follows, we limit our attention to the single volatility factor model.

We first derive the Fisher information for the latent mean factors and then for the time-

varying volatility.

A variable y is said to be drawn from a multivariate tν (µ, Σ) if it has the following

density function:

Γ
(

ν+p
2

)
Γ
(

ν
2

) (νπ)− p
2 (|Σ|)− 1

2

[
1 + 1

ν
(y − µ)⊺ Σ−1 (y − µ)

]− ν+p
2

, (B.19)

where µ is the location vector, Σ is the scale matrix, ν denotes degrees of freedom, and

p is the dimensionality. We can model the term-structure of interest rates by setting

µ = Λf t. In this case, the log-likelihood function for a single observation takes the form:

lt = log
[
Γ
(

ν + p

2

)]
− log

[
Γ
(

ν

2

)]
− p

2
log (νπ) − 1

2
log (|Σ|) (B.20)

− ν + p

2
log

[
1 + 1

ν
(yt − Λf t)

⊺ Σ−1 (yt − Λf t)
]

B.1. Latent factors

We can filter the latent level, slope, and curvature of the yield curve using the score

of the log-likelihood w.r.t. f t. Let εt = yt − Λf and Kt = Σ− 1
2 εt,16 then the score and

the Hessian are:

∂l

∂f
= −ν + p

2

[
1 + 1

ν
ε⊺

t Σ−1εt

]−1 (1
ν

)
(−2) Λ⊺Σ−1εt

= (ν + p)
[
ν + ε⊺

t Σ−1εt

]−1
Λ⊺Σ−1εt

= (ν + p) [ν + K⊺
t Kt]−1 Λ⊺Σ− 1

2 Kt; (B.21)
∂2l

∂f 2 = (ν + p)
[
ν + ε⊺

t Σ−1εt

]−1 ∂

∂f

{
Λ⊺Σ−1εt

}
+ (ν + p) ∂

∂f

{[
ν + ε⊺

t Σ−1εt

]−1
}

ε⊺
t Σ−1Λ

16Kt ∼ tν (0, I), which means that Kt are no longer correlated but they maintain their tail-dependence.
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= (ν + p)

2Λ⊺Σ−1εtε
⊺
t Σ−1Λ[

ν + ε⊺
t Σ−1εt

]2 − Λ⊺Σ−1Λ
ν + ε⊺

t Σ−1εt


= ν + p

ν

2
1
ν
Λ⊺Σ− 1

2 KtK
⊺
t Σ− 1

2 Λ[
1 + 1

ν
K⊺

t Kt

]2 − Λ⊺Σ−1Λ
1 + 1

ν
K⊺

t Kt

 . (B.22)

The ft − ft block of the Fisher information matrix, I, can be derived by noting that

Iff = − E
[

∂2l
∂f2

]
. Note that at this stage we maintain full generality. The results we

obtain are applicable even if the scale matrix, Σ is dense. For brevity of exposition, we

denote xi = ⋆
i D (θ) if xi is both an i-th independent (from all other draws considered)

draw and a draw from a distribution D with parameters θ.17 Additionally, y = ⋆
i..jD (θ)

if y is a transformation of the independent draws {xi..j} and is thus not independent of

them. Given that Λ and Σ (possibly Σt) are known at time t, we can limit the analysis

to derivation of:

E

 1
ν2 KtK

⊺
t(

1 + 1
ν
K⊺

t Kt

)2

 (B.23)

E
[

1
1 + 1

ν
K⊺

t Kt

]
(B.24)

1
ν
K⊺

t Kt expands to a convolution of F -distributed variables. In a general case it is hard

to derive the distributional properties of this quantity, but we note that even though Kt

was standardised and is thus uncorrelated it maintains tail dependence of εt via a common

draw from a Γ
(

v
2 , 2

v

)
distribution, then:

[
1 + 1

ν
K⊺

t Kt

]−1
=
[
1 + 1

ν

p∑
i=1

⋆
i F (1, ν)

]−1

=

1 +
(

⋆

p+1
Γ
(

v

2
, 2
))−1 p∑

i=1

⋆

i
Γ
(1

2
, 2
)−1

18
=

⋆

p+1
Γ
(

v
2 , 2

)
⋆

p+1
Γ
(

v
2 , 2

)
+

⋆

1..p
Γ
(

p
2 , 2

) (B.25)

=
⋆

1..p
B
(

v

2
,
p

2

)
(B.26)

E()= ν

ν + p
, (B.27)

17For instance, if xi = ⋆
i B (α, β) , yj = ⋆

j B (α, β) , and zi = ⋆
i B (α, β) then xi and yj are independent

draws from Beta distribution with shape parameters α and β while xi and zi refer to the same draw.
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where in (B.25) we use the property that a convolution of independently drawn ran-

dom variables from Γ (αi, β) is distributed as Γ (∑i α, β); in (B.26) we use the property

that
⋆
i Γ(αi,β)

⋆
i Γ(αi,β) +⋆

j Γ(αj ,β) is distributed as B (αi, αj); and in (B.27) we apply the expectation

operator.

By similar arguments the diagonal elements of (B.23) are a product of
⋆

1..p+1
B
(

1
2 , v+p−1

2

)
and

⋆

1..p+1
B
(

v
2 , p

2

)
which in turn lie on a hyperplane of Dir

(
1
2 , v

2 , p−1
2

)
and we denote them

as ⋆
p+1Dir (·) 1

2
and ⋆

p+1Dir (·) v
2

respectively. The relationship with Dirichlet distribution

is easily seen by rewriting (B.23) into:

⋆

1
Γ
(

1
2 , 2

)
⋆

1
Γ
(

1
2 , 2

)
+

⋆

p+1
Γ
(

v
2 , 2

)
+

⋆

2..p
Γ
(

p−1
2 , 2

)
⋆

p+1
Γ
(

v
2 , 2

)
⋆

1
Γ
(

1
2 , 2

)
+

⋆

p+1
Γ
(

v
2 , 2

)
+

⋆

2..p
Γ
(

p−1
2 , 2

) . (B.28)

The expectation of diagonal elements in (B.23) is thus:

E
[

⋆
p+1Dir (·) 1

2

⋆
p+1Dir (·) v

2

]
= E

[
⋆
p+1Dir (·) 1

2

]
E
[

⋆
p+1Dir (·) v

2

]
+ cov

[
⋆
p+1Dir (·) 1

2
, ⋆

p+1Dir (·) v
2

]
= ν

(ν + p)2 − 2ν

(ν + p)2 (ν + p + 2)

= v

(v + p) (v + p + 2)
(B.29)

It is possible to show that the off-diagonal elements are 0 in expectation. Combining

(B.29) and (B.27) we get that the f − f block of the Fisher information matrix is:

Iff = −ν + p

ν

[
2v

(v + p) (v + p + 2)
− v

v + p

]
Λ⊺Σ−1Λ

=
(

1 − 2
v + p + 2

)
Λ⊺Σ−1Λ

= cνΛ⊺Σ−1Λ (B.30)

Since the score for f is antisymmetric w.r.t. y − Λf while score for Σ is symmetric, the

off-diagonal blocks of the Fisher information matrix are 0 (contraction).

In a similar fashion we can model the single volatility factor, ht. The score and the

18Given that all constituent draws from the Gamma distributions in the denominator are independent,
we also have ⋆

p+1Γ
(

v
2 , 2
)

+⋆

1..p
Γ
(

p
2 , 2
)

≡ ⋆

p+1Γ
(

v
2 , 2
)

+⋆

1Γ
( 1

2 , 2
)

+⋆

2..p
Γ
(

p−1
2 , 2

)
≡ ⋆

1..p+1Γ
(

ν+p
2 , 2

)
, which

will be used at later stage.
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Hessian for ht are:

∂l

∂h
= −1

2
p + ν + p

2
K⊺

t Kt

1 + 1
ν
K⊺

t Kt

(B.31)

∂2l

∂h2 = −ν + p

2
K⊺

t Kt(
1 + 1

ν
K⊺

t Kt

)2 (B.32)

The derivation of the h−h block of the Fisher information matrix is straightforward given

(B.25). We restate the Hessian as:

∂2l

∂h2 =


⋆

p+1
Γ
(

v
2 , 2

)
⋆

p+1
Γ
(
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⋆
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Γ
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)

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=
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(

v
2 , 2
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⋆
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+
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(
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2 , 2
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(

p
2 , 2

)
⋆

p+1
Γ
(
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2 , 2
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+
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Γ
(

p
2 , 2

) (B.33)

Similarly to (B.28), the relationship with a two dimensional Dirichlet is appraent. The

Hessian w.r.t. the single volatility factor is distributed as Dir
(

v
2 , p

2

)
. The h − h block of

the Fisher information matrix then follows as:

Ihh = ν + p

2

(
pν

(p + ν)2 − 2pν

(p + ν)2 (p + ν + 2)

)

= pν

2 (p + ν + 2)
(B.34)
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C. Time-series and cross-sectional performance in the

simulation study

Figure Figure C.1 presents how well we are able to fit a selection of maturities over

time. In this figure, we look at the ‘Det t pTV’ DGP. As the factor paths are deterministic

in this case, we are able to plot the results with Monte Carlo confidence bands. Here,

we compare the ‘GAS t pTV' specification with the standard parameter-driven models

which can be estimated with the Kalman Filter. It is clear from the figure that the

largest differences are obtained for the short maturities. Consider the first panel with

the 6-month interest rate. Although all three models track the true values of the yield

correctly on average, the simple models produce much noisier results. This can be inferred

from the much wider Monte Carlo confidence bands obtained for the simple models.

These differences are due to a varying precision with which the unobserved components

can be filtered from the data using the different methods. For longer maturities, all

methods perform similarly. This is in line with the structure of the DNSM: the long

term yield corresponds to the first factor (fL,t), which is the dominant factor in the yield

curve dynamics. All methods are capable of filtering this dominant signal from the data.

Filtering the 6-month yield signal from the data is harder for two reasons. First, the 6-

month yield is typically much more volatile, particularly so over the sample period, which

includes the financial crisis. Second, given that the long-term yield captures the level of

the yield curve, filtering the short yield requires us to also have accurate descriptions of

the more subtle dynamic aspects of the yield curve, in particular the slope and also the

curvature. The difference in factor tracking across the three models is also clearly visible

in the top panels of Figures Figure C.2 and Figure C.3.

To shed more light on the performance of the models in different periods of time, in

Figures Figure C.2 and Figure C.3, we plot filtered factor patterns and parameter precision

for a high-volatility and a low-volatility period, respectively. For the high-volatility period,

we see that the GAS model yields more precise estimates of particularly the slope and

the curvature of the yield curve compared to the state space specifications with constant

variances and thin-tailed distributions. In particular, we see that it is important to allow

for time-varying variances in the short and medium rates over the heat of the financial

crisis in 2008. The constant variances of the plain vanilla state space models appear
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Figure Figure C.1

Time-series performance
This figure shows how well the competing methods are able to fit the evolution of yields in the
‘Det t pTV’ data-generating process. In this DGP, all replications share the factor and interest
rate paths in common. We show paths of the median estimates along with their 90% Monte
Carlo confidence intervals. The dates on the horizontal axis refer to the time period from which
the deterministic paths in the DGP were sourced.

Conf. bandKF 1CConf. bandKF pCMC 90% conf. bandGAS t pTVTrue path
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6.0
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5.6
12-month yield
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5.35
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5.50

5.55

5.60
6-month yield

substantially misspecified during this period.

The effect is further underlined by considering the fitted yield curves on the simulated

‘October 15, 2008’, for the three models across 3 arbitrarily chosen simulation replications.

This is done in the bottom row of panels in Figure Figure C.2. The strongly inverted
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Figure Figure C.2

Factors and cross-sections in high volatility regimes
This figure shows how well the competing methods are able to track the factors and fit the cross-
section of interest rates for the ‘Det t pTV’ data-generating process in high volatility regimes.
In this DGP, all replications share the factor and interest rate paths in common. We show paths
of the median estimates along with their 90% Monte Carlo confidence intervals. The top two
rows contain results for the latent factors: level, slope, curvature, and two (out of 11) volatilities.
We also report the distribution of the decay parameter, λ. In the bottom two rows we look at
differences in the fit in the cross-section of interest rates. The third row considers three synthetic
days at the beginning, in the middle, and towards the end of a ‘crisis’ with a sudden increase
in volatility (second row). The fourth row decomposes one such synthetic day and shows the fit
for arbitrarily chosen replications.
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Figure Figure C.3

Factor tracking in low volatility regimes
This figure shows how well the competing methods are able to track the factors and fit the cross-
section of interest rates for the ‘Det t pTV’ data-generating process in low volatility regimes.
See Figure Figure C.2 for detailed description.
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U-shaped yield curve is rather uncommon given the overall historical pattern of the data.

For all three simulations, however, it is clear that the GAS specification is much better

able to adapt to this non-standard yield curve pattern than the state space models with

fixed variances, even though also these models allow for time-variation in the coefficients

of the DNSMs.

The good tracking performance of the GAS model in this multivariate context is

further corroborated by looking at the low-volatility regime in Figure Figure C.3. The

filtered dynamic patterns of the three latent mean factors are quite comparable across

models. Also in this case, the curvature factor shows the biggest differences. The state

space models, however, estimate the volatility of the short and medium yields far too

high. The GAS models, by contrast, turn out to be much closer to the low volatility

patterns used to generate the data. In addition, the GAS model appears to be able to

capture the dynamics of volatility well, even though the level is still slightly too high,

though the error is much smaller than for the state space models with constant variances.

This is not surprising given the misspecified nature of the GAS model. In fact, Nelson

and Foster (1994) attribute this outcome to the inability of the filter to match the true
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‘variance of the variance’ everywhere in the state space. Other examples of observation-

driven filters producing ‘bias-at-extremes’ can be seen in Koopman, Lit, and Lucas (2015),

Creal, Koopman, Lucas, and Zamojski (2015), or Zamojski (2016).
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D. Estimation details and results

We are able to clearly show benefits of relaxing assumptions individually because the

score-driven models which we consider in the paper are nested. In this section we present

a general score-driven Nelson-Siegel model and lay down all the restriction which we

impose for parsimony. All ten GAS models can be derived from the following specification

by imposing further parameter restrictions. Note that the speed and stability of estimation

can be considerably improved for simpler models (e.g., ‘GAS t 1TV’) using the analytical

results which we provide in Section 3. We refer you to Section 3 for description of the

notation.

yt =
[
1 1−e−λτ

λτ
1−e−λτ

λτ
− e−λτ

]
f t + εt, εt ∼ t (0, Σ, ν) ,

Σ = Dt [(1 − ρ) I + ριι⊺] Dt, D2
t = diag

(
σ2

3meh3m,t , . . . , σ2
120meh120m,t

)
,

f t+1

ht+1

 =



fL,t+1

fS,t+1

fC,t+1

h3m,t+1
...

h120m,t+1


= ω + B


f t

ht

− ω

+ Ast, ω =



ωL

ωS

ωC

ω3m

...

ω120m


,

A =



ALL ALS ALC

ASL ASS ASC 0

ACL ACS ACC

A3m AOD . . . AOD

0
AOD

. . . . . . ...
... . . . . . . AOD

AOD . . . AOD A120m



, B =



BLL BLS BLC

BSL BSS BSC 0

BCL BCS BCC

B3m BOD . . . BOD

0
BOD

. . . . . . ...
... . . . . . . BOD

BOD . . . BOD B120m



,

where st is the score-driven step as defined in Section 2. Given this specification, Tables

D.1 and D.2 contain estimation results for the U.S. and the Polish data respectively. We

report parameter estimates with robust standard errors.
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Table D.1

Parameter estimates, U.S.
The table contains estimation results for 10 observation-driven models which we consider in the
paper. Here, we look at the U.S. market. The sample period is 1997–2015 and contains 4,815
daily observations. We report robust standard errors in parentheses. The table also includes
implicit and non-zero parameter restrictions where applicable.

‘GA
S

t
pT

V+
c’

‘GA
S

N
pT

V+
c’

‘GA
S

t
pT

V’

‘GA
S

N
pT

V’

‘GA
S

t
1T

V’

‘GA
S

N
1T

V’

‘GA
S

t
pC

’

‘GA
S

t
1C

’

‘GA
S

N
pC

’

‘GA
S

N
1C

’

ν 19.451 ∞ 26.382 ∞ 34.573 ∞ 17.321 2.686 ∞ ∞
(3.590) (3.714) (5.930) (1.098) (0.159)

λ 0.061 0.058 0.059 0.053 0.051 0.049 0.052 0.051 0.053 0.054
(0.000) (0.001) (0.000) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.001)

ωL 6.851 6.526 8.095 7.437 7.327 7.410 7.123 7.204 7.376 7.371
(0.213) (0.206) (0.151) (0.216) (0.096) (0.124) (0.085) (0.085) (0.094) (0.094)

ωS -1.225 -0.981 -1.944 -1.572 -1.554 -1.619 -1.520 -1.556 -1.619 -1.635
(0.167) (0.157) (0.080) (0.110) (0.060) (0.069) (0.046) (0.042) (0.045) (0.049)

ωC 0.248 -1.194 -2.684 0.384 0.965 0.748 1.825 1.465 0.773 0.749
(0.527) (0.159) (0.777) (0.954) (0.342) (0.447) (0.372) (0.383) (0.364) (0.359)

ALL 0.471 0.753 1.171 1.145 1.140 1.109 1.080 1.120 1.186 1.242
(0.078) (0.030) (0.062) (0.062) (0.076) (0.067) (0.166) (0.138) (0.053) (0.059)

ALS -0.294 -0.088 0.099 0.134 0.081 0.086 0.062 0.082 0.163 0.229
(0.081) (0.032) (0.054) (0.053) (0.064) (0.059) (0.134) (0.111) (0.045) (0.051)

ALC -0.039 0.000 0.048 0.038 0.075 0.055 0.038 0.041 0.042 0.055
(0.012) (0.011) (0.010) (0.009) (0.010) (0.009) (0.026) (0.021) (0.009) (0.010)

ASL 0.348 0.104 -0.186 0.052 -0.015 -0.099 -0.032 -0.063 -0.186 -0.209
(0.078) (0.023) (0.069) (0.071) (0.076) (0.082) (0.103) (0.105) (0.091) (0.097)

ASS 1.105 0.932 0.894 1.042 1.010 0.893 0.994 0.982 0.791 0.749
(0.087) (0.026) (0.064) (0.060) (0.068) (0.075) (0.087) (0.094) (0.082) (0.090)

ASC 0.043 0.010 -0.052 -0.015 -0.042 -0.035 -0.028 -0.034 -0.025 -0.042
(0.011) (0.010) (0.011) (0.010) (0.010) (0.010) (0.014) (0.013) (0.013) (0.014)

ACL 0.577 0.106 0.527 -0.588 0.246 -0.163 1.237 0.851 -0.189 -0.399
(0.111) (0.069) (0.198) (0.239) (0.211) (0.192) (0.604) (0.595) (0.252) (0.268)

ACS 0.577 0.147 0.395 -0.553 0.154 -0.145 0.926 0.610 -0.109 -0.355
(0.105) (0.070) (0.174) (0.212) (0.184) (0.177) (0.475) (0.469) (0.230) (0.244)

ACC 0.845 0.816 1.088 0.925 0.984 0.912 1.149 1.092 0.884 0.839
(0.038) (0.020) (0.034) (0.034) (0.031) (0.028) (0.080) (0.063) (0.036) (0.043)

BLL 0.999 1.000 1.000 0.997 0.998 0.999 1.000 1.000 0.998 0.998
(0.001) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

BLS 0.004 0.001 0.001 -0.001 0.001 0.001 -0.000 -0.000 0.001 0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

BLC -0.002 -0.003 0.001 0.003 0.002 0.001 -0.000 0.000 0.001 0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

BSL 0.001 -0.000 -0.000 0.002 0.001 -0.000 -0.007 -0.006 -0.001 -0.001
(0.001) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001)
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Table D.1

Parameter estimates, U.S. (continued)
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BSS 0.997 0.996 0.998 1.000 0.998 0.997 0.997 0.996 0.997 0.997
(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

BSC 0.001 0.007 0.001 -0.002 -0.000 0.001 0.005 0.005 0.002 0.002
(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

BCL 0.001 0.003 0.001 0.006 0.004 0.003 0.003 0.003 0.005 0.004
(0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.003) (0.003) (0.002) (0.003)

BCS -0.001 -0.001 0.002 0.004 -0.001 0.000 -0.001 -0.003 0.001 0.000
(0.001) (0.002) (0.003) (0.006) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

BCC 1.000 1.000 0.994 0.993 0.997 0.997 1.000 1.000 0.997 0.997
(0.001) (0.001) (0.003) (0.005) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003)

ω3m -4.592 -2.936 -6.398 -5.084 -5.448 -5.665
(0.126) (0.283) (0.350) (0.153) (0.127) (0.182)

ω6m -4.240 -3.049 -6.849 -8.173 ω3m ω3m

(0.146) (0.382) (0.403) (0.405)
ω9m -3.139 -2.661 -6.094 -6.484 ω3m ω3m

(0.166) (0.397) (0.198) (0.277)
ω12m -2.770 -2.340 -5.944 -6.075 ω3m ω3m

(0.203) (0.322) (0.231) (0.283)
ω18m -2.499 -2.042 -4.263 -6.113 ω3m ω3m

(0.189) (0.299) (0.376) (0.461)
ω24m -1.961 -1.979 -5.003 -5.773 ω3m ω3m

(0.152) (0.309) (0.194) (0.137)
ω36m -1.611 -1.735 -4.046 -5.134 ω3m ω3m

(0.088) (0.229) (0.165) (0.403)
ω60m -2.899 -1.375 -3.964 -4.621 ω3m ω3m

(0.139) (0.254) (0.138) (0.147)
ω84m -1.612 -1.400 -4.657 -5.198 ω3m ω3m

(0.083) (0.256) (0.166) (0.140)
ω108m -1.703 -1.504 -5.155 -5.667 ω3m ω3m

(0.117) (0.253) (0.217) (0.149)
ω120m -1.710 -1.644 -5.121 -5.425 ω3m ω3m

(0.113) (0.271) (0.136) (0.115)
A3m 0.235 0.155 0.197 0.213 0.115 0.028

(0.011) (0.007) (0.020) (0.032) (0.029) (0.003)
A6m 0.240 0.140 0.164 0.054 A3m A3m

(0.013) (0.006) (0.013) (0.016)
A9m 0.199 0.116 0.153 0.051 A3m A3m

(0.009) (0.005) (0.017) (0.009)
A12m 0.196 0.107 0.106 0.048 A3m A3m

(0.008) (0.005) (0.017) (0.006)
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Table D.1

Parameter estimates, U.S. (continued)
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A18m 0.186 0.104 0.100 0.031 A3m A3m

(0.013) (0.005) (0.013) (0.004)
A24m 0.168 0.101 0.100 0.035 A3m A3m

(0.015) (0.006) (0.012) (0.007)
A36m 0.165 0.099 0.104 0.045 A3m A3m

(0.018) (0.006) (0.011) (0.008)
A60m 0.138 0.103 0.090 0.057 A3m A3m

(0.015) (0.006) (0.006) (0.008)
A84m 0.156 0.096 0.046 0.030 A3m A3m

(0.015) (0.006) (0.004) (0.005)
A108m 0.169 0.088 0.038 0.022 A3m A3m

(0.016) (0.006) (0.006) (0.005)
A120m 0.174 0.084 0.047 0.030 A3m A3m

(0.016) (0.006) (0.007) (0.007)
AOD 0.009 -0.005 0.009 0.002

(0.007) (0.001) (0.002) (0.001)
B3m 0.971 0.993 0.981 0.918 0.967 0.990

(0.005) (0.001) (0.003) (0.015) (0.011) (0.002)
B6m 0.978 0.994 0.982 0.990 B3m B3m

(0.004) (0.001) (0.003) (0.004)
B9m 0.988 0.997 0.980 0.992 B3m B3m

(0.003) (0.001) (0.004) (0.002)
B12m 0.988 0.998 0.987 0.994 B3m B3m

(0.003) (0.001) (0.004) (0.001)
B18m 0.986 0.996 0.994 0.998 B3m B3m

(0.005) (0.001) (0.002) (0.001)
B24m 0.988 0.994 0.982 0.990 B3m B3m

(0.004) (0.001) (0.005) (0.003)
B36m 0.987 0.989 0.987 0.996 B3m B3m

(0.004) (0.002) (0.003) (0.003)
B60m 1.000 0.993 0.988 0.992 B3m B3m

(0.002) (0.001) (0.002) (0.002)
B84m 0.990 0.995 0.993 0.994 B3m B3m

(0.004) (0.001) (0.001) (0.003)
B108m 0.985 0.996 0.994 0.994 B3m B3m

(0.005) (0.001) (0.002) (0.003)
B120m 0.983 0.996 0.990 0.991 B3m B3m

(0.005) (0.001) (0.003) (0.004)
BOD -0.005 0.000 -0.001 -0.000

(0.003) (0.000) (0.000) (0.000)
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Table D.1

Parameter estimates, U.S. (continued)
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ρ 0.987 0.986
(0.001) (0.001)

σ2
3m 1.000 1.000 1.000 1.000 2.018 1.696 0.009 0.005 0.012 0.006

(0.074) (0.086) (0.000) (0.000) (0.001) (0.000)
σ2

6m 1.000 1.000 1.000 1.000 0.195 0.222 0.001 σ2
3m 0.002 σ2

3m
(0.007) (0.015) (0.000) (0.000)

σ2
9m 1.000 1.000 1.000 1.000 0.577 0.580 0.002 σ2

3m 0.005 σ2
3m

(0.007) (0.007) (0.000) (0.000)
σ2

12m 1.000 1.000 1.000 1.000 1.000 1.000 0.004 σ2
3m 0.009 σ2

3m
(0.000) (0.001)

σ2
18m 1.000 1.000 1.000 1.000 0.691 0.689 0.003 σ2

3m 0.004 σ2
3m

(0.012) (0.013) (0.000) (0.000)
σ2

24m 1.000 1.000 1.000 1.000 0.973 0.732 0.003 σ2
3m 0.003 σ2

3m
(0.043) (0.043) (0.000) (0.000)

σ2
36m 1.000 1.000 1.000 1.000 2.796 1.964 0.007 σ2

3m 0.007 σ2
3m

(0.121) (0.138) (0.000) (0.000)
σ2

60m 1.000 1.000 1.000 1.000 3.842 2.869 0.011 σ2
3m 0.012 σ2

3m
(0.152) (0.180) (0.000) (0.000)

σ2
84m 1.000 1.000 1.000 1.000 1.825 1.429 0.005 σ2

3m 0.006 σ2
3m

(0.067) (0.078) (0.000) (0.000)
σ2

108m 1.000 1.000 1.000 1.000 1.519 1.184 0.004 σ2
3m 0.004 σ2

3m
(0.065) (0.068) (0.000) (0.000)

σ2
120m 1.000 1.000 1.000 1.000 2.048 1.567 0.006 σ2

3m 0.006 σ2
3m

(0.088) (0.093) (0.000) (0.000)
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Table D.2

Parameter estimates, Poland
The table contains estimation results for 10 observation-driven models which we consider in the
paper. Here, we look at the Polish market. The sample period is 2007–2015 and contains 2,262
daily observations. We report robust standard errors in parentheses. The table also includes
implicit and non-zero parameter restrictions where applicable.
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ν 10.608 ∞ 19.219 ∞ 24.895 ∞ 15.767 1.227 ∞ ∞
(2.560) (3.702) (3.714) (3.608) (0.126)

λ 0.046 0.045 0.055 0.055 0.054 0.053 0.057 0.057 0.061 0.062
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ωL 5.234 5.212 5.385 5.233 5.385 5.303 5.327 5.380 5.310 5.377
(0.068) (0.163) (0.060) (0.059) (0.061) (0.064) (0.352) (0.021) (0.043) (0.037)

ωS -0.970 -0.921 -1.111 -1.068 -1.056 -1.031 -0.860 -1.116 -1.046 -1.133
(0.022) (0.042) (0.060) (0.033) (0.051) (0.037) (0.665) (0.049) (0.043) (0.044)

ωC 0.482 0.503 -0.300 0.276 -0.337 -0.096 -0.551 -0.366 -0.228 -0.444
(0.211) (0.412) (0.193) (0.217) (0.230) (0.243) (0.234) (0.198) (0.162) (0.111)

ALL 0.639 0.665 1.061 0.921 0.982 0.875 1.098 0.839 0.930 0.985
(0.051) (0.071) (0.056) (0.049) (0.049) (0.045) (0.071) (0.061) (0.051) (0.049)

ALS -0.166 -0.241 -0.009 -0.143 -0.102 -0.155 -0.039 0.021 -0.115 -0.060
(0.044) (0.056) (0.032) (0.034) (0.028) (0.031) (0.058) (0.044) (0.032) (0.028)

ALC -0.020 -0.021 0.057 -0.002 0.044 0.004 0.064 0.055 0.005 0.031
(0.015) (0.018) (0.014) (0.015) (0.012) (0.013) (0.041) (0.012) (0.016) (0.013)

ASL -0.121 -0.122 -0.652 -0.647 -0.719 -0.616 -0.770 -0.289 -0.773 -0.827
(0.041) (0.062) (0.072) (0.060) (0.066) (0.061) (0.087) (0.115) (0.073) (0.075)

ASS 0.772 0.852 0.514 0.503 0.486 0.528 0.444 0.562 0.429 0.373
(0.051) (0.044) (0.041) (0.043) (0.042) (0.043) (0.054) (0.075) (0.050) (0.048)

ASC 0.008 0.021 -0.074 -0.079 -0.071 -0.031 -0.112 -0.035 -0.067 -0.093
(0.010) (0.015) (0.017) (0.020) (0.017) (0.017) (0.024) (0.025) (0.024) (0.021)

ACL 0.704 1.198 1.099 1.570 1.830 1.763 1.342 0.688 2.003 1.743
(0.155) (0.182) (0.192) (0.158) (0.178) (0.156) (0.432) (0.318) (0.247) (0.237)

ACS 0.522 1.146 0.907 1.465 1.504 1.519 1.293 0.463 1.602 1.278
(0.138) (0.205) (0.159) (0.120) (0.134) (0.123) (0.265) (0.196) (0.176) (0.151)

ACC 0.807 1.024 0.960 1.226 1.098 1.139 1.105 0.725 1.265 1.113
(0.059) (0.047) (0.069) (0.057) (0.054) (0.049) (0.204) (0.076) (0.080) (0.069)

BLL 1.000 1.000 0.996 0.996 0.996 0.995 0.998 0.999 0.997 0.998
(0.003) (0.009) (0.002) (0.002) (0.002) (0.003) (0.005) (0.001) (0.002) (0.002)

BLS -0.002 0.002 0.000 0.003 0.000 0.001 -0.002 0.003 0.001 0.000
(0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.004) (0.001) (0.001) (0.001)

BLC 0.002 -0.000 0.002 0.002 0.002 0.003 -0.004 -0.001 0.002 0.001
(0.002) (0.004) (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001)

BSL 0.001 -0.002 0.001 0.003 0.002 0.004 -0.001 -0.002 -0.001 -0.002
(0.003) (0.004) (0.002) (0.003) (0.003) (0.003) (0.003) (0.002) (0.003) (0.003)
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Table D.2

Parameter estimates, Poland (continued)
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BSS 0.998 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.999 0.999
(0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

BSC 0.001 0.004 0.002 -0.001 0.001 -0.000 0.010 0.010 0.004 0.005
(0.001) (0.002) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.002) (0.001)

BCL -0.007 -0.000 0.012 0.002 0.005 0.009 -0.003 0.007 0.010 0.009
(0.007) (0.018) (0.005) (0.006) (0.005) (0.005) (0.021) (0.004) (0.006) (0.006)

BCS 0.000 -0.010 -0.005 -0.015 -0.006 -0.003 -0.010 -0.022 -0.006 -0.006
(0.003) (0.004) (0.004) (0.006) (0.004) (0.004) (0.025) (0.003) (0.005) (0.005)

BCC 1.000 1.000 0.995 1.000 0.998 0.994 1.000 0.990 0.989 0.990
(0.003) (0.008) (0.004) (0.003) (0.003) (0.003) (0.012) (0.002) (0.004) (0.004)

ω3m -2.811 -2.971 -4.281 -3.888 -5.032 -5.272
(0.501) (0.439) (0.198) (0.324) (0.135) (0.189)

ω6m -3.363 -3.521 -4.596 -4.901 ω3m ω3m

(0.243) (0.396) (0.243) (0.571)
ω9m -2.746 -3.636 -5.899 -5.985 ω3m ω3m

(0.554) (1.128) (0.184) (0.141)
ω12m -4.405 -4.745 -5.504 -5.448 ω3m ω3m

(0.190) (0.540) (0.263) (0.214)
ω18m -4.779 -4.678 -5.235 -5.593 ω3m ω3m

(0.141) (0.258) (0.165) (0.178)
ω24m -4.891 -5.754 -5.968 -6.718 ω3m ω3m

(0.150) (0.290) (0.176) (0.247)
ω36m -4.431 -5.150 -6.004 -6.127 ω3m ω3m

(0.154) (0.637) (0.121) (0.190)
ω60m -4.430 -5.027 -5.484 -5.802 ω3m ω3m

(0.146) (2.607) (0.148) (0.203)
ω84m -4.626 -4.909 -5.661 -5.940 ω3m ω3m

(0.150) (0.451) (0.146) (0.143)
ω108m -4.676 -4.964 -5.977 -6.103 ω3m ω3m

(0.146) (1.062) (0.124) (0.126)
ω120m -4.741 -5.132 -5.893 -5.993 ω3m ω3m

(0.135) (0.276) (0.117) (0.141)
A3m 0.179 0.058 0.174 0.137 0.213 0.033

(0.016) (0.010) (0.017) (0.075) (0.040) (0.005)
A6m 0.172 0.073 0.136 0.061 A3m A3m

(0.018) (0.012) (0.014) (0.019)
A9m 0.170 0.087 0.141 0.115 A3m A3m

(0.013) (0.030) (0.016) (0.016)
A12m 0.200 0.086 0.114 0.073 A3m A3m

(0.022) (0.010) (0.017) (0.014)
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Table D.2

Parameter estimates, Poland (continued)

‘GA
S

t
pT

V+
c’

‘GA
S

N
pT

V+
c’

‘GA
S

t
pT

V’

‘GA
S

N
pT

V’

‘GA
S

t
1T

V’

‘GA
S

N
1T

V’

‘GA
S

t
pC

’

‘GA
S

t
1C

’

‘GA
S

N
pC

’

‘GA
S

N
1C

’

A18m 0.194 0.081 0.111 0.049 A3m A3m

(0.021) (0.015) (0.027) (0.013)
A24m 0.223 0.095 0.190 0.039 A3m A3m

(0.017) (0.034) (0.038) (0.006)
A36m 0.201 0.079 0.180 0.060 A3m A3m

(0.021) (0.047) (0.023) (0.019)
A60m 0.218 0.078 0.185 0.067 A3m A3m

(0.021) (0.066) (0.026) (0.013)
A84m 0.202 0.098 0.175 0.068 A3m A3m

(0.022) (0.070) (0.029) (0.017)
A108m 0.181 0.088 0.178 0.076 A3m A3m

(0.022) (0.046) (0.027) (0.022)
A120m 0.182 0.096 0.162 0.059 A3m A3m

(0.020) (0.049) (0.030) (0.015)
AOD 0.028 -0.000 0.021 0.001

(0.007) (0.002) (0.005) (0.001)
B3m 0.982 1.000 0.956 0.961 0.931 0.985

(0.005) (0.002) (0.009) (0.013) (0.017) (0.005)
B6m 0.976 0.992 0.977 0.993 B3m B3m

(0.006) (0.004) (0.005) (0.008)
B9m 0.985 0.995 0.962 0.948 B3m B3m

(0.004) (0.012) (0.008) (0.011)
B12m 0.968 0.993 0.980 0.973 B3m B3m

(0.007) (0.005) (0.006) (0.007)
B18m 0.949 0.990 0.974 0.976 B3m B3m

(0.010) (0.004) (0.008) (0.006)
B24m 0.952 0.990 0.945 0.987 B3m B3m

(0.009) (0.008) (0.022) (0.008)
B36m 0.956 0.999 0.936 0.974 B3m B3m

(0.008) (0.007) (0.015) (0.016)
B60m 0.950 1.000 0.947 0.981 B3m B3m

(0.008) (0.022) (0.013) (0.010)
B84m 0.955 0.985 0.936 0.969 B3m B3m

(0.008) (0.044) (0.018) (0.016)
B108m 0.949 1.000 0.915 0.956 B3m B3m

(0.013) (0.012) (0.024) (0.026)
B120m 0.950 0.991 0.924 0.974 B3m B3m

(0.013) (0.024) (0.026) (0.017)
BOD -0.014 -0.001 -0.006 0.000

(0.004) (0.003) (0.003) (0.001)
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Table D.2

Parameter estimates, Poland (continued)
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ρ 0.897 0.845
(0.011) (0.017)

σ2
3m 1.000 1.000 1.000 1.000 3.303 2.730 0.013 0.004 0.011 0.008

(0.275) (0.226) (0.001) (0.000) (0.001) (0.000)
σ2

6m 1.000 1.000 1.000 1.000 2.359 2.145 0.010 σ2
3m 0.014 σ2

3m
(0.157) (0.148) (0.001) (0.001)

σ2
9m 1.000 1.000 1.000 1.000 1.115 0.938 0.009 σ2

3m 0.019 σ2
3m

(0.072) (0.078) (0.001) (0.002)
σ2

12m 1.000 1.000 1.000 1.000 1.000 1.000 0.008 σ2
3m 0.016 σ2

3m
(0.001) (0.001)

σ2
18m 1.000 1.000 1.000 1.000 0.633 0.639 0.004 σ2

3m 0.006 σ2
3m

(0.018) (0.020) (0.000) (0.000)
σ2

24m 1.000 1.000 1.000 1.000 0.384 0.351 0.002 σ2
3m 0.002 σ2

3m
(0.021) (0.021) (0.000) (0.000)

σ2
36m 1.000 1.000 1.000 1.000 0.468 0.422 0.003 σ2

3m 0.003 σ2
3m

(0.026) (0.026) (0.000) (0.000)
σ2

60m 1.000 1.000 1.000 1.000 0.694 0.612 0.004 σ2
3m 0.005 σ2

3m
(0.039) (0.037) (0.000) (0.000)

σ2
84m 1.000 1.000 1.000 1.000 0.547 0.483 0.003 σ2

3m 0.003 σ2
3m

(0.030) (0.030) (0.000) (0.000)
σ2

108m 1.000 1.000 1.000 1.000 0.516 0.457 0.003 σ2
3m 0.003 σ2

3m
(0.030) (0.029) (0.000) (0.000)

σ2
120m 1.000 1.000 1.000 1.000 0.617 0.536 0.003 σ2

3m 0.004 σ2
3m

(0.036) (0.034) (0.000) (0.000)
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