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1. Introduction

The specific fee structures and light regulation of the industry give hedge funds the

opportunity to follow innovative investment strategies and to change them according

to where profit opportunities arise. The excess returns and changing risk exposures as

documented in the literature are a witness of their exceptional institutional structure.

They can be seen as an innovative force in seeking out new profit opportunities and

achieving diversification for investors. In this paper, we test whether the initially declared

risk profile of a hedge fund—in terms of its investment focus and related characteristics—is

a sign of innovation and an actionable piece of information for investors.

We identify hedge funds whose innovation leads to the creation of new product cate-

gories and compare them to other funds that attempt to imitate their approach. We are

interested in identifying factors that motivate fund managers to innovate. We also look

at whether some of the benefits of innovation are shared with investors. The benefits

of early entry are a common object of study in the literature on industrial organisation.

Therein, such benefits would be considered to reflect barriers to entry, see Tirole (1988).

In the case of hedge funds, no formal barriers to entry exist. However, the sophis-

ticated nature and specialisation of hedge funds create specific barriers to profit from

opportunities that have a tendency to diminish with the attention that they receive. We

hypothesise that the type of market and investment segment cannot easily be changed by

a running hedge fund and that they are in practice fixed at the inception of the fund. For

instance, a combination of trading technology, local knowledge, and specific investment

skills of staff are specific to certain investment styles. These create hurdles for existing

hedge funds to copy from innovators. Furthermore, hedge funds operate in an environ-

ment where a high degree of connectedness and specialised knowledge of clients’ needs

is key. In this respect, hedge funds are similar to investment banks for which there is

evidence of early-mover advantages (Tufano, 1989).

To form peer groups of hedge funds we use characteristics that are supplied by the

funds when registering in the Lipper TASS database. They include information on the

type of assets funds invest in (stocks, bonds, futures, etc.), their sector and investment fo-

cus (emerging markets, US equities, etc.), and other fund details (use of managed accounts,
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use of leverage, etc.). Collectively, we refer to these characteristics as the institutional

design of a hedge fund. The test we provide in this paper is whether the institutional

design, i.e., a particular set of fund characteristics, provides information on the type of

strategy followed by a hedge fund. If the initial characteristics convey little information

on important return-generating aspects of the investment strategy, we should not find any

performance-related effects if a hedge fund is established before other funds that share

a similar institutional design and risk profile. However, if the innovation that is neces-

sary to set up a hedge fund affects both static characteristics and return patterns, our

approach measures the benefits of early entrants in the hedge fund industry.

It follows that accurate identification of clusters is key. We develop an algorithm

specifically for the purpose of the paper. The custom-made algorithm, which we call Fast

Binary Clustering, is necessary because of high dimensionality of the dataset (144 binary

variables on which to cluster). Existing algorithms are either not suitable to binary data

or exhibit problems with the high dimensionality.

We look at first-mover advantages by comparing early entrants and their followers on

a number of dimensions, including performance and pricing. The following are our find-

ings. First, hedge funds that are first in a cluster earn a significantly higher excess return

than funds that come later. Taken over all funds, the difference in excess performance

between the first 20% and the last 20% of funds is 0.32% per month. The results are

robust across hedge fund styles and to alternative specifications of risk factors, including

the Pastor and Stambaugh (2003) and Sadka (2010) liquidity factors. We do not find

evidence for benefits to late or delayed entry.

Second, we find evidence for differences in pricing between the innovators and the

imitators. The earliest quintile of funds in a cluster charges significantly higher incentive

fees. The effect on management fees is the opposite, innovators charge lower management

fees than the followers.

Third, we find that the portfolios sorted on entry time all load significantly on the

first quintile portfolio (Q1), and their alphas decrease markedly. We take this as evidence

that the returns of the first quintile portfolio, the ‘innovators’, contains non-systematic

hedge funds’ risk that is not captured by the standard risk factors. In contrast, if we

extend the model by including the fifth quintile portfolio (Q5), the ‘laggards’, we are
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not able to better explain out-performance of other hedge funds and the alphas do not

decrease significantly. The fifth quintile of funds might contain non-systematic hedge fund

risk, but it is not performance-related. Similar results hold when we regress hedge fund

index-returns on the Q1 and Q5 portfolio returns.

Finally, panel and cross-sectional regressions show that the benefits of innovators are

declining with the age of the fund and with net flows. This is consistent with a rational

hedge fund market, where innovating hedge funds capture a large portion of investment

flows and deliver alpha only to the earliest investors. A skilled hedge fund manager

and the initial investors capture the excess performance. Later investors obtain only the

marginal cost of capital, as in Berk and Green (2004). The returns on non-innovative

hedge funds could still be attractive to investors, who might find it difficult to replicate

systematic exposures themselves, either because of institutional or technological restric-

tions, or considerations of operational risk.

Our findings are related to the analysis of first-mover advantages in the financial

industry, such as investment banking, mutual funds and pension funds, see Tufano (1989);

Herrera and Schroth (2011); Lounsbury and Crumley (2007); Makadok (1998); Lopez and

Roberts (2002). There, the findings are that first-movers obtain a higher market share, but

do not necessarily obtain higher margins or higher fees. Our evidence for higher incentive

fees that are charged by early-movers, which is not found in the other industries, might

reflect an effect of an optimal size of hedge funds, see Getmansky (2012). First-movers

are aware of this effect and set their initial fees accordingly.

Another contribution of this paper is to hedge fund classification. It is well known

that self-reported styles are indicative of the exposures to risk factors, see Fung and Hsieh

(1997), Agarwal and Naik (2004). Our results show that static characteristics other than

style can be used to make groupings that have a bearing on performance and provide

better peer candidates when evaluating hedge funds.

The paper is also related to studies on the factors that drive out-performance of hedge

funds and early-stage investors, see Agarwal, Nanda, and Ray (2013), Sun, Wang, and

Zheng (2012), Fung, Hsieh, Naik, and Teo (2015). We show how institutional design can

be used to single out innovating hedge funds, and that early entrants in a cluster show

out-performance that declines with age. It stresses the importance for investors to invest
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at an early stage if they want to capture out-performance from hedge funds.

Finally, our results have some bearing on the issue of systemic risk in the hedge fund

industry. If a lot of hedge funds try to imitate successful strategies and early movers are

easily identifiable the systemic risk might increase. As the innovators and the imitators

would hold similar positions and unwind them at the same time these risk are likely to

materialise, see for example Khandani and Lo (2011), Aragon and Strahan (2012).

The remainder of the paper is structured as follows. Section 2 briefly describes the

data we use. We discuss related literature and develop our hypotheses in Section 3. In

Section 4, we discuss consistency of our dataset and whether it may affect our analysis.

Section 5 introduces our clustering algorithm and explains entry-time variables which we

use in our analysis. Section 6 presents the results and Section 7 tests for the robustness

of the results. Section 8 concludes.

2. Data

We use static and monthly data from the Lipper TASS database. The database

contains information for both defunct and currently operating funds. The sample period

is from January 1994 to January 2012. The TASS is a commercial database to which

reporting is voluntary and it is commonly used in the hedge fund literature. The sample

consists of 16,051 hedge funds.

Table 1 shows summary statistics for hedge funds in the TASS database grouped by

style. The largest group of hedge funds in the database, at 36%, are fund of funds. The

second most popular category of funds engages in long/short equity hedging strategies

(21%). Each of the remaining styles represents less than 11% of the sample. Note, that

we do not include fund of funds in our analysis.

In addition to time-series of returns and values of assets under management, the TASS

database provides three more tables that are relevant for our analysis. One table holds

the product details of each fund, such as the name, primary category, currency, inception

date, fee structure, and others. This information is used by most researchers when making

selections of hedge funds or determining patterns in the cross-section of hedge funds. We

use this data to compare funds that we have labelled as innovators with other funds that
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Table 1

Summary Statistics for Hedge Funds in the TASS Database
Summary statistics for hedge funds in the TASS database, per style, for the period January 1994
December 2010. The statistics are all presented as median statistics unless otherwise stated.
Assets under management (AUM) is in millions of dollars, where Mean and Max are taken over
the lifetime of the fund. AUM in Non-USD currencies are converted using month-end exchange
rates provided by Datastream. We report median values in the cross-section. ‘Alive’ is the
percentage of funds that are still reporting to TASS in March 2012. The return statistics are
reported for the whole sample as well as for the equally-weighted portfolios of funds per style. *,
** and *** denote significant differences from zero (or normality) at the 90%, 95% and 99%-level,
respectively.
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All 15961 5 13 23 39 20 1.5 0.6 0.46 2.47 −0.44 1.57 0.88 0.85 1.64 −0.4 2.45
* *** ***

Fund of Funds 5791 7 14 22 41 10 1.5 0.51 0.27 1.98 −0.89 1.98 0.69 0.57 1.58 −0.57 2.96
** *** ***

L/S Eq. Hedge 3452 3 13 22 32 20 1.5 0.68 0.66 3.52 −0.13 1.2 1.19 1.18 2.56 0.08 2.0
** ** *** ***

Multi-Strategy 1700 5 10 16 58 15 1.5 0.77 0.69 1.99 −0.34 1.7 0.98 0.9 1.4 −0.74 3.36
* ** *** ***

Em. Mkts 910 5 15 26 47 20 1.8 1.0 0.88 4.93 −0.25 1.75 1.79 1.21 4.24 −0.89 3.7
*** ** *** ***

Managed Futures 830 2 8 14 42 20 2.0 0.55 0.62 4.08 0.12 0.71 0.78 0.91 2.51 0.24 −0.14
***

Global Macro 760 3 6 11 35 20 1.5 0.54 0.58 2.63 0.03 0.71 0.85 0.73 1.65 −1.02 6.41
*** ***

Event Driven 717 6 32 57 26 20 1.5 0.79 0.7 2.41 −0.38 2.29 1.21 0.94 1.68 −1.62 6.26
*** ** *** ***

Eq. Mkt Neutral 637 4 15 26 24 20 1.5 0.48 0.36 2.23 −0.24 1.25 0.77 0.83 0.98 −0.94 4.64
** *** ***

Other 425 5 22 38 50 20 1.5 0.74 0.68 2.27 −0.15 2.34 1.09 1.04 1.64 0.22 7.48
*** *** *** ***

Fixed Income Arb. 413 7 28 46 32 20 1.5 0.65 0.5 1.73 −0.47 2.44 0.87 0.76 1.15 −3.39 21.1
*** ** *** ***

Convertible Arb. 241 6 37 68 22 20 1.5 0.7 0.53 1.75 −0.54 2.12 1.03 0.78 2.16 −3.66 29.57
*** *** ***

Ded. Short Bias 46 4 19 37 35 20 1.3 0.07 0.29 5.6 0.13 0.86 −0.06 0.35 4.83 0.42 2.01
***

Options Strategy 37 3 5 12 38 20 1.5 0.46 0.59 3.22 −0.09 6.98 0.61 0.65 0.98 0.44 1.1
*** *** **

we believe to be copy-cats.

The other two tables contain detailed information on a hedge fund’s focus and invest-

ment approach. This data is a result of a questionnaire that hedge funds fill in when they

are registering in the database. In total, there are 144 yes/no questions which hedge funds

are asked to answer to help investors in narrowing down their risk profile. The questions

can be grouped into thre groups: (i) details on instruments used by the funds, (ii) ad-

ditional details about the investment approach, and (iii) other details. The first group

is further divided based on asset type (equities, fixed income, commodities, currencies,

property, etc.) and instrument type (cash, convertible, exchange traded, etc.). Within

investment details, hedge funds are asked to specify their sectoral focus (biotechnology,

natural resources, closed-end funds, corporate bonds, etc.), investment approach (arbi-
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trage, bottum-up, contrarian, etc.), geographic focus (Africa, Asia-Pacific, India, etc.),

and investment focus (bankruptcy, distressed bonds, pairs trading, etc.). The complete

list of variables is in Appendix A. To our knowledge, this part of the TASS database has

not been used previously in the literature. We use this data to infer both the institutional

design and the initial risk profile of hedge funds. The 144 variables are then the inputs in

our clustering algorithm that we use to divide hedge funds into innovators and imitators.

3. Related literature and hypothesis development

There is agreement in the literature on the fact that some funds show persistent out-

performance (Jagannathan, Malakhov, and Novikov, 2010). The out-performance seems

to be related to changing risk exposures in reaction to (or in anticipation of) changing

market conditions, see Criton and Scaillet (2011); Patton and Ramadorai (2013). Other

factors which help explain cross-sectional differences in hedge fund performance include

manager characteristics (Boyson, 2010), strategy distinctiveness (Sun, Wang, and Zheng,

2012), incentives (Agarwal, Daniel, and Naik, 2009), and even the geographical location

of the fund (Teo, 2009). Even though exposures of hedge funds to standard risk factors

are typically time-varying, there is also evidence that the managers are consistent in their

chosen investment approach and style. For fixed-income hedge funds, Fung and Hsieh

(2002) find a static exposure to fixed-income related spreads. For market timing hedge

funds, Chen and Liang (2007) find persistence in timing ability. Fung and Hsieh (2001)

find that lookback straddle benchmarks explain trend following funds’ returns. Moreover,

non-linear exposures and liquidity timing effects have predictive power for individual

hedge fund returns, see Agarwal and Naik (2004). This is highly suggestive of hedge

funds being consistent in their investment approaches and, by extension, risk profiles.

Furthermore, from a legal perspective, hedge funds are bound to stick to an invest-

ment approach that they have described in the private placement memorandum (PPM)

that is provided to potential investors. ‘A PPM is a widely utilised form of disclosure

which contains the type of information that would be provided by a registration state-

ment publicly filed under section 5 of the Securities Act, along with the unique facts and

circumstances surrounding the fund’, see Shadab (2009) and SEC (2003).1 The informa-

1 Furthermore, according to SEC (2003), PPMs generally discuss broadly the fund’s investment strate-
gies and practices. It may also include a disclosure that some investments may be done outside the stated
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tion used for registering with a hedge fund database, such as the TASS, is likely to be

similar. Moreover, ‘as a matter of law and practice, the funds typically make disclosures

sufficient for investors to make informed investment decisions’. Alternatively, hedge fund

managers may remain vague about their strategy and risk attracting fewer risk-averse

investors. A change in an investment approach would typically be an event for which

additional disclosures are warranted and require agreement from all investors. In fact,

it may be easier for a hedge fund manager to open a new investment pool and possibly

liquidate the old fund than to implement considerable changes in the older fund’s risk

profile/institutional design.

That being said, we see the changing risk profile of a representative, newly created fund

as the first piece of evidence of the ongoing innovation and the flexible nature of the whole

industry. Consider a simple breakdown of new hedge funds by their style over time in

Panel A of Figure 1. We clearly see that popularity of styles varies in time. New funds with

distinctive risk profiles are created in reaction to (or in anticipation of) changing market

conditions. As an example, Equity Market Neutral was a popular strategy between 1998

and 2004. The Managed Futures category was popular in the 1990s and is only recently

regaining the spotlight. Interestingly, Long/Short Equity Hedge, which is both the most

populous and the most studied style category, has been decreasing in popularity since

the turn of the century—a signal that generating high absolute returns in this crowded

segment is becoming increasingly difficult. Instead, we observe a quick rise in popularity

of the Multi-Strategy category which became the most commonly declared style in the

late 2000s.

Style categories convey only a limited amount of information about a hedge fund’s risk

profile. For one, hedge funds are assigned to a single style category even if their actual

approach is consistent with more than one style. Secondly, even within a single style

category hedge funds were likely to pursue different strategies early on in the sample

period than later on. We can get a better understanding of a hedge fund’s risk profile by

looking at the set of 144 other descriptors which we discussed in Section 2. In contrast to

style categories, a hedge fund manger is free to select as many (or as few) descriptors as

they want. In this way, hedge funds can convey a very detailed description of their risk

profile or purposefully remain vague to investors. Similarly to styles, we plot popularity

strategy at the discretion of the fund’s manager.
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Figure 1

Popularity of Styles and Descriptors
In this figure we show changes in time of risk profiles of new hedge funds. In Panel A, we look
at selected styles. In Panel B, we look at a selection of other descriptors (investment focus,
approach, geographical focus, etc.). In our dataset, there are in total 144 such descriptors. We
use them later on in our analysis to construct clusters of similar hedge funds. In each case, we
plot the fraction of new funds which match a style or descriptor (dashed lines). For clarity, we
highlight in red, solid lines periods in which styles or descriptors were the most popular.
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of a selection of such descriptors in Panel B of Figure 1. We again find considerable

fluctuations in popularity of individual descriptors.

Our main hypothesis of the benefits to innovation follows naturally. The cycles in

popularity of styles and the descriptors correspond to underlying strategies gaining and

losing popularity over time. Innovating and maintaining the potential for innovation

usually comes at a huge cost—both material and intellectual (Cohen and Levinthal, 1990).

Given that we observe signs of innovation in the industry, managers need to benefit greatly
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from it. With the hedge fund industry being largely return-driven, Figure 1 is suggestive

of innovators earning high returns, which brings in similar funds that are attracted by

the good performance and the associated high income from incentive fees. When the

performance starts decreasing, other particular strategies or setups gain the attention

of investors and managers. The short lifespan and high turnover of hedge funds is one

indication of such a premium to innovation. The median lifespan of a hedge fund in our

dataset is approximately 5 years.2 In the period 1994–2012, the rates of entry and exit

were on average around 30% and 13% per year respectively.3

In this paper, we divide hedge funds into innovators and imitators based on the de-

tailed risk profile inferred from the 144 binary descriptors. To reiterate, these include

information on the funds’ investment focus, geographic focus, instruments used, and in-

vestment approach. The risk profile is set at the early stage of a funds life and is reported

to the data provider with the initial application. Funds only rarely make any adjustments

to this part of their profile in the TASS database, see Section 4 for detailed discussion of

data consistency. Before we are able to label funds as innovators or otherwise, we cluster

funds into peer groups. Clustering allows us to essentially look at intersections of many

characteristics rather than analyse them one-by-one.

Several other papers provide motivation for our hypothesis that profitable hedge fund

innovation is the driving force of entry. Sun, Wang, and Zheng (2012) finds that funds

that are more distinct in terms of returns out-perform in the subsequent year by as much

as 3.5 p.p., relative to the least distinct hedge funds. Titman and Tiu (2011) find that

hedge funds with a low R-squared in a factor model have a better performance. Thus,

an ability to differentiate their investment approach from comparable hedge funds gives

a hedge fund’s manager a competitive edge. The differentiation can occur already at the

moment of inception and we posit that the initial risk profile of a hedge fund is enough

to classify the fund as an innovator or imitator.

Naik, Ramadorai, and Stromqvist (2007) find that hedge funds’ alpha returns are

2 Median lifespan for funds created in the 1990s, 2000–2008, and after 2008 are 9, 6, and 3 years
respectively.

3 Prior to the 2008 financial crisis these rates of entry and exit were around 30% and 6%. After the
crisis, we see a considerable decrease in the inflow of new funds and considerable increase in the funds
dropping out—the entry rate is at 10% while 17% of funds exit every year. Exits could be overstated by
funds that stop reporting for reasons other than liquidation. The short lifespan and high incentive fees
can be seen as characteristic for a highly competitive industry in which innovation and being ‘first’ is key.
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sensitive to capital inflows in the previous month. When inflows are higher, the potential

for hedge funds to create an excess performance diminishes. This provides an argument

that competition within segments of hedge funds exists and that it leads to lower returns

over time. In the same vein, Getmansky (2012) finds that hedge funds have a larger

probability of being liquidated when the particular segment in which they are active

grows. Competition drives down returns due to decreasing returns to scale, crowded

trades, and the fact that inefficiencies targeted by hedge funds are only transient and

disappear when more arbitrage capital is allocated to them. Innovative hedge funds, being

first in a particular segment, could reap the benefits from the absence of competition. This

leads to our first hypothesis:

H1: Hedge funds that come early in a cluster of similar hedge funds perform

better.

We also expect the returns of hedge funds that come later not to offer the same level

of performance despite being correlated with those of the innovators. The alternative

hypothesis is that hedge funds are given enough flexibility and discretion to quickly change

their investment strategies so that the initial risk profiles are not informative about their

performance. If this is the case, we expect to find no evidence of any benefits from early

entry for both the managers and the investors. Benefits to innovation may also be delayed.

For example, Christensen, Suárez, and Utterback (1998) consider disadvantages of early-

entry, when there is a learning window before a final specification of a product (dominant

design) is determined. We test for this as well.

Furthermore, we expect that after an initial period of superior performance, the re-

turns decline on average. This is due to the hyper-competitive nature of the industry,

well-documented problems with strategy scalability (Naik, Ramadorai, and Stromqvist,

2007; Getmansky, 2012), and temporary inefficiencies that are underlying profitable hedge

fund strategies. For example, a profitable opportunity in an emerging market would at-

tract investors who trade similarly, raising prices and depressing returns. The innovative

managers are unlikely to be unaffected by an increase in competition in their segment

which leads to our second hypothesis:

H2: The better performance of innovators declines over time.

11



Innovative hedge fund managers are also likely to be affected by low familiarity of po-

tential investors with their new strategies. As in the case of innovative investment banks,

they may need to under-price new products to attract customers (Tufano, 1989). In par-

ticular, we expect the managers to lower barriers to entry and exit from the funds. This

would be reflected in shorter lock-up and redemption periods. We also expect innovative

managers to put more of their skin in the game and signal conviction about the prof-

itability of their new strategy. This would correspond to lower management fees, higher

incentive fees, higher personal capital invested in the fund, and lower leverage. These in-

stitutional features are not used at the clustering stage. We can, thus, test whether hedge

funds that enter early are different from others in these respects. Our third hypothesis is

then:

H3: Innovative hedge funds have features that are related to high-risk innova-

tive strategies, such as lower leverage and higher personal capital, distinctive

fee structure, or lower lock-up periods.

4. Data consistency

Our interpretation of the clustering results and the subsequent separation of hedge

funds into innovators and imitators depend on our ability to reasonably identify initial

risk profiles of the funds. By extension, we require that the 144 binary descriptors from

the initial questionnaire are not restated, although small changes are not likely to affect

clustering results. In this section, we briefly discuss consistency of this part of the dataset

between a number of vintages.

We are aware of the fact that many data points in the TASS database have been

restated by hedge funds. For instance Patton, Ramadorai, and Streatfield (2015) find

that 49% of funds have changed at least one return. In this paper, we have assumed

that the 144 descriptors we use to cluster hedge funds are constant and represent the

initial vision of a fund’s strategy. To verify if this is a reasonable assumption, we compare

the data in our baseline database vintage to three older vintages, the earliest of which

is from 2005. First, we are able to corroborate the findings of Patton, Ramadorai, and

Streatfield (2015). In our case, a similarly large fraction of hedge funds (41%) restated at

least one return. Furthermore, we find that 6.4% of funds changed their incentive fees at
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least once, 2.98% made adjustments to their management fees, and 2.24% modified their

payout period. Surprisingly, at least 5%4 of hedge funds restated their primary product

category, i.e., the ‘style’. Note, that all these variables are routinely used in the hedge

fund literature.

Although we do find that the 144 descriptors we use in clustering have also been

restated, this has been done to a significantly lesser extent. For instance, the most com-

monly changed descriptor indicating whether a fund uses leverage was edited by only 2.1%

of hedge funds. The 10th most changed descriptor (fundamental investment approach)

was modified by only 1.2% of funds. Finally, any issue in consistency of the data can be

attributed to a tiny fraction of hedge funds, as approximately 2% were responsible for

over 60% of all changes to the 144 descriptors.

Another potential problem stems from the fact the TASS could have changed the

questionnaire between 1994 and 2012. In particular, some of the 144 descriptors might

not have been tracked in the earlier vintages. Fortunately, it appears that even very early

in our sample period all 144 descriptors were present in the database. To verify that, we

look at liquidation dates of hedge funds. For each of the descriptors, we find all defunct

funds for which the particular descriptor was set to 1. We then assume that a descriptor

was present in the database at the moment of the earliest liquidation. We reason that it

is highly unlikely for a manager of a (long) defunct fund to adjust such information in

the TASS database. Based on this analysis, we find that at least 75% of descriptors were

present in the database at the beginning of 1997. By 2002, we can verify presence of 94%

of the descriptors. Surprisingly, even though the currently very popular ‘Multi-strategy’

style was still not present in the 2005 vintage of the database, the hedge funds could

indicate that they had a multi-strategy investment focus at least as far back as 1999.

We conclude that the 144 descriptors we consider can be used to infer funds’ initial

risk profiles with enough accuracy to use this data in our analysis.

4 The TASS database introduced the ‘Multi-strategy’ style category sometime between 2005 and 2009.
The fraction of hedge funds which were operating before 2009 and which changed their product category
is 6.2%. Note, however, that 5.2% of hedge funds that were set up after this category was introduced have
also changed their style. The descriptor ‘multi-strategy investment focus’ predates the style category.
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5. Clustering and entry-time variables

5.1. Clustering hedge funds by institutional design

Hedge funds are sorted into clusters based on similarities in their institutional design,

which we define as the zeros and ones in the set of 144 binary variables listed in Ap-

pendix A. These variables are provided by the TASS database and describe the strategy

and design of the hedge fund.

To form clusters, we use a clustering algorithm specifically developed for this purpose,

which we call Fast Binary Clustering (FBC). It builds on existing algorithms such as the k-

means algorithm (Lloyd, 1982; Steinhaus, 1956; Ball and Hall, 1965; MacQueen, 1967) and

density-based algorithms (Kailing, Kriegel, and Kröger, 2004; Ester, Kriegel, Sander, and

Xu, 1996; Böhm, Kailing, Kriegel, and Kröger, 2004). In short, FBC is an agglomerative

hybrid clustering algorithm that combines hierarchical, centroid, and density-connected

algorithms. Each iteration of the clustering algorithm consists of a centroid and density

step. In the centroid step, the algorithm assigns an archetype ‘genome’ to each cluster

by averaging the characteristics of all observations in it. In the density step, previously

identified clusters of hedge funds which are close enough (depending on a pre-defined

distance metric ε) are merged. In the next iteration, the distance at which clusters are

formed are increased by ∆ε and the centroid and density steps are repeated. The distance

is increased until the maximum allowed distance for joining two clusters is reached. For

the distance between hedge funds and clusters we use the cosine distance measure, as in

Hoberg and Phillips (2010); Watts and Strogatz (1998); Granovetter (1973).

The end result of the FBC-algorithm is a deterministic partition of the data given the

distance between clusters ε and the size of its increments ∆ε. Further details of the FBC

algorithm are given in Appendix B. The logic underlying the algorithm is illustrated in

Figure 2.

For the type of data we use, the clustering results are most affected by one input

variable—the maximum distance between two clusters and/or funds to be clustered to-

gether. In the following, we work with clusters based on a maximum distance of 0.12,
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Figure 2

Illustration of Fast Binary Clustering
We show two examples of our FBC method for clustering hedge funds on their binary descriptors.
The exact description is in Appendix B. Panel A has a four-dimensional binary example that
starts from four funds in three clusters. In the first step, the centroid step, the centre of a cluster
is found by eliminating some noisy descriptors (indicated by lighter shade). In the density step,
the cosine distance between the central fund, unclustered candidate funds, and other clusters
is computed. Funds or clusters with the lowest distance to another fund or cluster are merged
into a new cluster, as long as the distance is not exceeding a threshold distance. The workings
of the algorithm can also be illustrated with a two-dimensional continuous example, as in Panel
B.

Panel A: Binary example

Panel B: Continuous example

which leads to clusters with good properties from a clustering perspective5. We assess the

sensitivity of our results to the distance parameter in Section 7.3.

Each cluster is assigned a starting month date, a duration (lifespan), and a size. The

starting month of the cluster is the inception month of the first hedge fund6 in the cluster.

The duration of the cluster is defined as the time period between the inception dates of

the last fund and the first fund in the cluster. We discard clusters with less than 5 funds.

5On average, the computational burden of clustering the hedge fund takes 2 hours on the Dutch
National Computer Cluster (Lisa), which is comprised of a Dell Xeon InfiniBand cluster, 20 TFlop/sec.

6A hedge fund is considered to have been established in month t if its inception occurred after 15th
of t − 1 and before 16th of t.
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From our sample of hedge funds from 1994 to 2012, a total of 2,771 hedge funds (26%)

are in a cluster. 4,233 (40%) are not in any cluster, and 3,553 (34%) are not considered

clustered because of a cluster size smaller than 5 funds, the minimum threshold.

To see more clearly how we operationalise this analysis, consider Figure 3. The clus-

tering takes place in Step 1. We take all hedge funds available in the database and we

group them into clusters based solely on the descriptors. Importantly, the clustering algo-

rithm does not take hedge funds’ entry times as an input. Consequently, the fact that we

are able to obtain clusters composed of funds that entered the market at similar times is

the first sign our approach is able to identify meaningful and narrow product categories.

Note that it is typical in the literature on first-mover advantages to only consider markets

or product categories (in our case clusters) that have already formed and where there

were enough players for the analysis to be meaningful. See, for example, Tufano (1989,

2003); Utterback and Suárez (1993). In addition, we consider the unclustered funds as

a special category. This allows us to take a position on whether what we observe is a story

of: i) skilled hedge fund managers creating new markets (innovating) in which case the

unclustered funds and first-movers should be able to generate a higher alpha. Or/and, ii)

destructive impact of followers who, when they are able to replicate a strategy, through

competition remove alpha from the market for all players.

In step 2 of the analysis, we reintroduce the time dimension (see Figure 3) given the

obtained clusters. This provides us with the first test of whether our approach is valid.

Intuitively, if a strategy sensu largo is recoverable from the binary descriptors we expect

the clusters to be: i) relatively short in time in the sense that entry is concentrated

around a specific point in time (e.g., in 2006) and not scattered across the time line (e.g.,

with some funds entering in 1994 and others in 2007); and ii) clusters define meaningful

markets. Table 2 has the summary statistics of the resulting clusters of hedge funds,

reported at clusters’ inception years. A total of 172 clusters is identified by the clustering

algorithm, with an average cluster size of 15.84 funds and duration of 54.47 months which

we find tight enough. Furthermore, looking at specific clusters we see clear and familiar

patterns, e.g.: popularity of bio-technology and IT firms in the late 1990s, rise of the real

estate markets in mid 2000s, and increasing popularity of Latin American hedge funds

through the last decade.
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Figure 3

Clustering and Quintile Definition
In this figure we graphically present the steps we take to divide hedge funds into innovators and
imitators. In Step 1, we group hedge funds in clusters based on the binary descriptors of their
strategies. At this stage, we do not consider when a particular hedge fund was created. We
present three slices of 300 funds from the TASS universe. The funds and the 144 descriptors are
plotted on the horizontal and vertical axes, respectively. A black dot means that for a fund X,
the descriptor Y is active/ticked off. The left-most figure contains 5 large clusters. We follow
with smaller clusters, and funds which were not clustered in the right-most figure. Given the
clusters, we look at the inception dates in Step 2. In Step 3, we divide hedge funds within
a cluster into early- and late-movers. Panel A contains our actual clustering results. For clarity
of exposition, we use simulated data in Panels B and C.
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Table 2

Summary Statistics for New Clusters Per Year
Summary statistics for newly created clusters, per year of first entry. The cluster time span
denotes the number of months between the first and the last entry of a hedge fund to the
cluster. ANOVA and Kruskal-Wallis are tests for the quality of clustering, under the null
samples originate from the same distribution. *, ** and *** denote significance at the 90%, 95%
and 99%-level, respectively.

Number of new Cluster size Cl. time span

Cl
us
ter
s

Fu
nd
s

‘N
o C

lus
ter
’

Me
an

Me
dia
n

Me
an

Me
dia
n

AN
OV
A
F-
tes
t

Kr
us
ka
l-W

all
is

1994 9 483 194 53.67 41.0 137.22 146.0 3.51 49
*** ***

1995 8 734 201 91.75 12.5 124.25 143.0 4.28 38
*** ***

1996 6 248 264 41.33 5.0 102.5 103.0 2.78 37
** ***

1997 2 13 303 6.5 6.5 53.5 53.5 1.66 4
*

1998 7 88 284 12.57 8.0 115.57 132.0 5.94 19
*** ***

1999 8 51 369 6.38 6.0 75.0 72.0 1.46 24
***

2000 14 122 403 8.71 7.0 79.93 84.0 3.77 54
*** ***

2001 11 94 469 8.55 6.0 67.18 63.0 0.96 18
*

2002 13 125 525 9.62 6.0 67.38 67.0 0.42 17

2003 12 94 621 7.83 8.0 32.0 27.0 1.06 24
**

2004 17 142 734 8.35 7.0 33.94 23.0 1.82 49
** ***

2005 16 174 749 10.88 7.5 33.13 26.5 1.59 32
* ***

2006 9 69 713 7.67 6.0 16.22 9.0 2.8 17
*** **

2007 20 151 574 7.55 6.0 21.0 23.0 1.21 30
**

2008 8 63 484 7.88 5.5 14.75 11.5 2.81 16
*** **

2009 9 55 405 6.11 6.0 9.44 5.0 2.73 14
*** *

2010 3 18 268 6.0 5.0 5.0 4.0 1.89 2

All 172 2724 7560 15.84 7.0 54.47 38.0 2.61 564
*** ***

All 2003+ 94 766 4548 8.15 6.0 24.2 19.0 2.21 221
*** ***

Finally, in step 3 of the analysis we divide funds into quintiles based on the chosen

anchor point. For instance, in Panel C of Figure 3 we look at early-movers and the anchor

point is chosen to be the date of first entry.

A second test to see whether clustering leads to distinct return properties per cluster of

hedge funds is by comparing the mean returns within and between newly formed clusters.
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The test statistics of equal mean returns are in the last columns of Table 2. For most years,

the F-statistics are high and significant, which gives some indication that our clustering

method picks up differences in return distributions.

To prevent all hedge funds starting in 1994 to be deemed innovators, and to have

equal representation of early and late arrivals in cluster, our subsequent analyses will use

return data from the 2003-2010 period. The ultimate row of the table the averages for

the 2003-2010 time period.

6. Results

We split hedge funds into quintiles based on the absolute distance between their incep-

tion date and the cluster variable, which is either FirstEntry, MaxGrowth, or NegGrowth.

Dividing up in quintiles in this way is similar to Lopez and Roberts (2002); Utterback

(1971); Utterback and Suárez (1993); Christensen, Suárez, and Utterback (1998).

For FirstEntry the first quintile (Q1) consists of hedge funds that belong to the first

20% of entrants in their cluster and the last quintile (Q5) has the 20% of funds which

enter last.

For MaxGrowth, the first quintile has the 20% funds which enter the closest to the

maximum-growth point. The last quintile comprises of the 20% of hedge funds which

were opened furthest away from the maximum-growth point. Typically, both the first-

and last-entrants are in the last quintile. Division into quintiles based on NegGrowth is

done in a similar fashion.

6.1. Entry-time sorted quintiles

We first compute simple summary statistics, the average per-fund Fung and Hsieh

(2004) 7-factor alpha, and average survival (in months) for quintiles of hedge funds based

on any of the three anchor points. With new clusters being formed every year (see Table 2)

each quintile contains hedge funds with inception dates spread out over several years. If

there are benefits from innovation (better performance, survival, etc.) at a certain anchor

point, we would expect to see a monotonic pattern in the population of hedge funds for

the summary statistics, e.g., significantly lower returns of imitators. Thus, we report
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Table 3

Quintiles of Hedge Funds for Different Anchor Points
This table has the summary statistics of quintiles of hedge funds from 2003–2010, based on their
entry time in the cluster. Panel A describes hedge fund quintiles where quintiles are formed
based on the entry time of a hedge fund relative to the inception of the cluster (the first entry).
Likewise, Panel B has the quintiles formed based on the absolute time between the inception
time of a clustered hedge fund and the month in which the maximum growth of the cluster is
achieved. Panel C has the quintiles formed based on the absolute time between inception of
a fund and the first month of negative growth. A separate sample consists of funds that are not
clustered. For comparison, statistics of this sample are repeated in the last row of each panel.
‘Alpha’ is the average per-fund alpha from the Fung and Hsieh (2004) 7-factor model, with
Newey-West corrected t-statistics in parentheses. ‘Duration’ is the average reporting period in
months. *, ** and *** denote significant differences from zero (or normality) at the 90%, 95%
and 99%-level, respectively.

Panel A: First Entry as the anchor point

Mean Median Std. dev. Skewness Kurtosis N Alpha Adj. R2 Survival

Q1 0.63 0.85 1.3 −9.66 128.36 262 0.64 0.18 38.55
*** *** *** ***

Q2 0.53 0.59 0.72 −0.38 6.26 394 0.4 0.21 43.17
*** *** *** ***

Q3 0.45 0.58 1.16 −3.01 36.96 556 0.35 0.22 33.91
*** *** *** ***

Q4 0.37 0.46 1.24 −1.23 10.86 510 0.33 0.23 28.21
*** *** *** ***

Q5 0.35 0.43 1.47 −5.9 77.08 429 0.32 0.24 21.92
*** *** *** ***

No Cluster 0.47 0.44 1.23 1.1 38.31 4548 0.4 0.24 36.86
*** *** *** ***

Q1-Q5 0.28 0.32 −0.05 16.63
*** *** *** ***

Q1-NC 0.16 0.24 −0.06 1.69
* *** ***

NC-Q5 0.12 0.09 0.0 14.94
* ***

significance levels for differences in means from the first quintile of average returns, alpha

and duration. The results are shown in Table 3.

Panel A of Table 3 has the results for hedge funds sorted according to the FirstEntry

anchor point. Mean return, median and alpha are monotonically decreasing from the first

quintile to the last quintile. The difference in mean returns is 0.28 percentage points.

For alpha it is 0.32 percentage points. Both are statistically significant. The average

R-squared is slightly higher for Q5 funds. There is no monotonic pattern for durations,

although the duration of Q1 funds is on the high end, with 38 months against 21 for Q5

funds. In all, this is suggestive of benefits from investing in hedge funds that are first in

a cluster. Criton and Scaillet (2011); Patton, Ramadorai, and Streatfield (2015); Boyson
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Table 3

Quintiles of Hedge Funds for Different Anchor Points
(continued)

Panel B: Max Growth as the anchor point

Mean Median Std. dev. Skewness Kurtosis N Alpha Adj. R2 Survival

Q1 0.43 0.61 1.38 −3.02 30.99 360 0.43 0.21 25.5
*** *** *** ***

Q2 0.42 0.48 1.41 −6.45 85.02 474 0.27 0.21 36.78
*** *** *** ***

Q3 0.45 0.53 0.99 −0.96 9.06 509 0.39 0.24 32.87
*** *** *** ***

Q4 0.49 0.61 0.95 −0.03 10.8 430 0.39 0.21 33.72
*** *** ***

Q5 0.44 0.69 1.27 −7.36 95.16 378 0.5 0.19 34.81
*** *** *** ***

No Cluster 0.47 0.44 1.23 1.1 38.31 4548 0.4 0.24 36.86
*** *** *** ***

Q1-Q5 −0.01 −0.07 0.02 −9.31
***

Q1-NC −0.04 0.02 −0.03 −11.35
* ***

NC-Q5 0.02 −0.09 0.05 2.05
* ***

Panel C: Negative Growth as the anchor point

Mean Median Std. dev. Skewness Kurtosis N Alpha Adj. R2 Survival

Q1 0.48 0.78 1.66 −7.02 75.28 450 0.52 0.22 30.88
*** *** *** ***

Q2 0.43 0.5 1.05 −1.19 11.14 572 0.34 0.22 26.49
*** *** *** ***

Q3 0.42 0.46 1.03 −0.06 8.9 558 0.31 0.2 35.41
*** *** ***

Q4 0.48 0.59 1.13 −3.81 48.91 459 0.4 0.21 40.76
*** *** *** ***

Q5 0.45 0.62 0.91 −1.77 3.97 112 0.54 0.3 10.33
*** *** *** ***

No Cluster 0.47 0.44 1.23 1.1 38.31 4548 0.4 0.24 36.86
*** *** *** ***

Q1-Q5 0.03 −0.03 −0.08 20.55
*** ***

Q1-NC 0.01 0.11 −0.02 −5.97
*** ***

NC-Q5 0.02 −0.14 −0.06 26.52
** ***

(2010) associate a similar level of out-performance with evidence of skill.

As seen in Table 2 some 75% of all hedge funds were not clustered, either because

the cluster size is too small (less than 5 funds per cluster), or because the necessary

distance to include them in a valid cluster is larger than the threshold set for clustering.

Given the high fraction of non-clustered hedge funds, this could be seen as evidence

that distinctiveness is important, and that benefits to imitation are low (or barriers are
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high). From the summary statistics for unclustered funds we observe excess returns and

durations for unclustered funds which are significantly higher than Q5 funds, but lower

than Q1-funds. This suggests that being unclustered is a proxy for distinctiveness, which

comes with a better performance than being a late entrant in a cluster, i.e., Q5-funds.

In Panels B and C, we report results for the other anchor points (MaxGrowth and

NegGrowth). We do not see any clear patterns in average returns, alphas or survival times.

Therefore, we find no evidence for a ‘window of opportunity’ effect, around the time of

maximum growth, nor an effect of higher efficiency for late entrants. In the following, we

limit our attention to early-entry advantages, and thus the FirstEntry anchor point.

6.2. Portfolio results

We sort hedge funds into portfolios in the following way: first—to focus on the early

stages of the hedge fund life cycle—we discard returns beyond 24 months for each fund7.

This allows us to compare innovation and imitation occurring in similar periods of time.

Then, at each month of the sample period all hedge funds with returns in that month

are grouped into equally-weighted portfolios based on their quintile of entry. For each

portfolio we compute Fung and Hsieh (2004) 7-factor alphas and present the results in

Table 4.

The portfolio results in Table 4 are similar to the statistics of the quintiles: there

is a decreasing pattern for the mean return and alpha over the quintile portfolios. The

portfolio with a long position in Q1 and short in Q5 has a mean return of 0.55 and an

alpha of 0.46. The portfolio with Q1 hedge funds and a short position in not-clustered

funds has a mean return and alpha which are not significantly different from zero. This

reinforces the idea that unclustered hedge funds could be regarded as innovative, just as

hedge funds in Q1. In what follows, we keep these funds as a separate category, to see in

what respects they are similar to Q1-funds. The portfolio of funds that come latest in the

cluster (Q5) has no significant mean excess return or alpha. The difference between Q1

and Q5 portfolios is more pronounced than for the quintiles (where the complete return

histories are used). This suggests that the innovation benefits that accrue to investors are

located in the initial stages of the lifespan of clusters.

7Using a complete history of returns produces results which are qualitatively similar.
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Table 4

Portfolio Results
This table has the summary statistics of portfolios of hedge funds from 2003–2010, formed
by sorting hedge funds into quintile-portfolios based on their entry time in the cluster. So, Q1
represents the portfolio of hedge funds that belong to the first 20% of funds to arrive in a cluster,
Q2 the following 20%, etc. A separate portfolio consists of funds that are not clustered, labelled
‘No Cluster’ (NC). Portfolios are equally-weighted, using the first 24 months of each fund to
compute returns. The row label ‘Q1-Q5’ corresponds to a portfolio with a long position in Q1
and a short position in Q5. Portfolios for ‘Q1-NC’ and ‘NC-Q5’ are formed likewise. ‘Alpha’ and
‘R2’ are the portfolio alpha and adjusted R-squared from the Fung and Hsieh (2004) 7-factor
model, with Newey-West corrected t-statistics in parentheses. *, ** and *** denote significant
differences from zero (or normality) at the 90%, 95% and 99%-level, respectively.
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R
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Q1 96 0.94 1.25 −3.26 0.24 1.01 1.71 5.38 0.01 1.89 0.29 0.65 0.12
*** *** *** (4.56)

***
Q2 96 0.93 1.28 −2.57 0.25 1.11 1.69 5.56 −0.1 1.42 0.23 0.66 0.33

*** ** ** (4.89)
***

Q3 96 0.7 1.3 −3.15 0.08 0.78 1.52 3.46 −0.66 0.8 0.24 0.43 0.29
*** *** ** (3.88)

***
Q4 96 0.47 1.57 −6.38 −0.2 0.69 1.44 3.25 −1.54 4.76 0.35 0.16 0.5

*** *** *** *** (1.31)

Q5 96 0.39 2.27 −7.02 −0.33 0.72 1.47 6.4 −0.83 2.84 0.18 0.03 0.25
* *** *** * (0.15)

No Cluster 96 0.9 1.53 −4.59 0.09 1.15 1.9 4.32 −1.0 1.73 0.29 0.6 0.65
*** *** ** *** (7.54)

***

Q1-Q5 96 0.55 2.05 −5.16 −0.41 0.28 1.47 7.94 0.41 2.23 0.13 0.46 0.08
*** * *** (2.31)

**
Q1-NC 96 0.04 1.28 −4.45 −0.5 0.1 0.56 3.67 −0.23 1.99 0.45 −0.11 0.36

*** *** (−0.87)

NC-Q5 96 0.52 1.62 −4.85 −0.21 0.32 1.27 8.09 0.75 6.74 −0.05 0.41 −0.01
*** *** *** (2.78)

***

6.3. Characteristics of Innovation Quintiles

Table 5 presents the average characteristics per quintile of entry and the non-clustered

(NC) hedge funds.

The results in Table 5 lead to a number of interesting observations. First, there is

an interesting pattern in the fees. In the quintiles of innovation, the average incentive

fee of the earliest quintile (Q1) is 2.41% higher than that of Q5. The management fee

is -0.24% lower. These patterns are consistent with the idea that early-arriving hedge
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Table 5

Average Characteristics Per Innovation Quintile
This table shows the average of fund characteristics per quintile. Leveraged is an indicator on
whether the fund uses leverage. Max. leverage is the maximum leverage used. Avg. leverage
is the stated average leverage. AUM is assets under management, in millions of dollars. Re-
demption is the redemption frequency. Lock-up period and redemption are in months. Personal
capital is a 0-1 indicator on whether principals have money invested. Hedge funds which are
not assigned to any cluster are labelled ‘NC’. The column labelled ‘Q1-Q5’ has the difference in
the average statistic between funds in Q1 and in Q5; ‘Q1-NC’ for the difference between Q1 and
the unclustered funds; ‘NC-Q5’ for the difference between the unclustered funds and Q5. *, **
and *** denote significance at the 90%, 95% and 99%-level, respectively.

Q1 Q2 Q3 Q4 Q5 NC Q1-Q5 Q1-NC NC-Q5

Incentive fee 15.25 13.89 15.24 13.74 12.84 17.72 2.41 −2.48 4.88
*** *** ***

Management fee 1.37 1.51 1.44 1.55 1.61 1.58 −0.24 −0.21 −0.03
*** ***

Leveraged 0.66 0.55 0.53 0.54 0.54 0.58 0.12 0.08 0.04
*** **

Max. leverage 96.98 90.35 156.04 83.81 170.06 119.15 −73.08 −22.17 −50.91

Avg. leverage 1.67 33.56 20.19 19.52 16.91 44.3 −15.24 −42.63 27.39
** *** ***

Initial AUM (mean) 14.63 79.62 51.29 245.35 19.88 25.14 −5.25 −10.51 5.26
**

Initial AUM (median) 5.9 14.95 5.75 4.84 5.77 6.96

Lock-up period 0.78 0.78 1.42 1.43 0.94 3.4 −0.17 −2.62 2.45
*** ***

Redemption 1.57 1.35 1.69 1.68 1.59 1.76 −0.03 −0.19 0.17

Personal capital 0.0 0.0 0.05 0.05 0.03 0.21 −0.02 −0.21 0.18
*** *** ***

Managed accounts 0.03 0.02 0.04 0.06 0.03 0.23 0.0 −0.19 0.19
*** ***

Minimum investment 0.13 0.92 0.63 0.79 0.77 1.3 −0.64 −1.17 0.53
*** ***

High water mark 0.28 0.31 0.35 0.36 0.38 0.79 −0.1 −0.51 0.41
*** *** ***

funds are innovators, who obtain a high reward for their innovation only if it is successful,

and an accordingly lower management fee. The pattern for the management fee is most

pronounced, monotonically increasing from Q1 to Q5.

Second, Q1 funds significantly differ in characteristics from funds in other quintiles.

Q1 funds have leverage more often than in Q5 (0.66 against 0.54), but with a lower

average level (1.67% against 16.9%). A lower fraction of Q1 managers has personal capital

invested, minimum investment is lower and use of a high-water mark is less frequent,

compared to Q5. It remains to be seen whether the out-performance of Q1 funds can be

attributed to their early-entry in a cluster, or whether it is a result of their characteristics

(or both). We test for this in a later subsection, using a cross-sectional Fama-MacBeth
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Table 6

Early and Late Entry as Factors for Quintile Portfolios
This table has the regression results for the Fung and Hsieh (2004) 7-factor model, augmented
with the portfolio returns from the Q1 and Q5-portfolios as risk factors. Q1 is the portfolio
with early entrants in a cluster and Q5 is the portfolio with late-arriving hedge funds, as in
Table 4. We report the alpha and the R2 of the regressions and loadings on the Q1 and Q5
factors. Newey-West corrected t-statistics in parentheses. *, ** and *** denote significance at
the 90%, 95% and 99%-level, respectively.

Panel A: Fung and Hsieh (2004) with Q1 portfolio

Q2 Q3 Q4 Q5 No Cluster NC-Q5

Alpha 0.26 0.14 −0.14 −0.38 0.26 0.5
(1.65) (0.80) (−0.76) (−1.46) (2.20) (2.47)

* ** **
FQ1 0.49 0.35 0.37 0.5 0.41 −0.11

(6.16) (2.51) (3.03) (2.77) (4.41) (−0.86)
*** *** *** *** ***

Adj. R2 0.53 0.38 0.57 0.31 0.74 −0.02

Panel B: Fung and Hsieh (2004) with Q5 portfolio

Q1 Q2 Q3 Q4 No Cluster Q1-NC

Alpha 0.62 0.61 0.37 0.1 0.55 −0.09
(4.44) (4.96) (3.97) (1.06) (8.84) (−0.72)
*** *** *** ***

FQ5 0.18 0.28 0.33 0.32 0.26 −0.09
(2.77) (4.95) (3.40) (3.56) (3.14) (−1.88)
*** *** *** *** *** *

Adj. R2 0.19 0.51 0.53 0.66 0.76 0.37

regression where the characteristics in Table 5 are taken into account.

Note that the results in Table 5 are not due to time-trends in characteristics, as hedge

funds in the quintiles enter and exit at various times in the sample period.

6.4. Early and Late Entry as Factors

The observed excess performance of early-entry funds does not necessarily mean that

they are imitated by hedge funds that come later in the cluster. It could be that hedge

funds in later quintiles are entering similar markets as the innovators, but with different

strategies and return characteristics. To test for this, we regress the returns of the other

quintile portfolios on the returns of the first quintile portfolio and the 7 Fung and Hsieh

(2004) risk factors. The results are in Table 6.

Panel A of Table 6 shows the loadings of the quintile portfolios and unclustered funds
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on the returns of the Q1-portfolio of funds, noted as F_Q1. It also shows the alpha

and R-squared. All portfolios seem to load significantly on the Q1-portfolio return. This

shows that the Q1-portfolio captures systematic hedge fund risk that is not covered by

the standard risk factors. The alphas are insignificant and decreasing in the quintile

portfolios. Only the portfolio with unclustered funds has a significant alpha of 0.26.

Panel B shows the factor loadings and alphas when the Q5-portfolio is used as a risk

factor. Here, both the loadings and the alphas are significant. Moreover, we observe that

the alphas are are only slightly smaller than to the portfolio alphas in Table 4. This

indicates that the Q5-portfolio contains only a small part of non-systematic hedge fund

risk. This is consistent with the insignificant alpha of the Q5-portfolio return in Table 4.

A second approach to analysising the properties of the Q1 and Q5-portfolios is to

test for their explanatory power in style regressions of hedge fund index-returns. This is

reported in Table 7.

Table 7 has the results of three different style regressions. The first model has the

Fung and Hsieh (2004) 7-factor model for a portfolio of all funds, and the separate styles.

We report only the alpha and R-squared of the regression. It shows that a large fraction

of index-return variation can be explained by standard risk factors, which is a well known

feature of hedge fund indices. The styles with the lowest R-squared are ‘Options Strategy’

, ‘Managed Futures’ and ‘Global Macro’. The second model has the Q1-portfolio as an

added risk factor. The loadings on Q1 are significant for all of the styles, except Fixed

Income Arbitrage and Options Strategy. Across all styles, the alphas decrease and the

R-squares increase. Thus the Q1-portfolio seems to capture a substantial part of non-

systematic hedge fund risk.

Inclusion of the Q5-portfolio in the style regression, the third model, has the same

effect on R-squares as with the Q1-portfolio. However, for all funds, the alpha with

Q5 (0.52) is far higher than with Q1 (0.25), and a similar pattern is seen for all but

a few hedge fund styles. The modest or absent decrease in alpha, compared to the first

model, is consistent with Table 6 and again suggests that the Q5-portfolio has far less

non-systematic hedge fund risk than the Q1-portfolio.
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Table 7

Style Regressions With Innovation Risk Factors
Style regressions for the TASS style index returns regressed on the Fung and Hsieh (2004) 7-
factor model, with the returns from the Q1 and Q5-portfolios as additional risk factors. Q1 is
the portfolio with early arriving hedge funds in the cluster and Q5 is the portfolio with late
arriving hedge funds, as in Table 4. We report the alphas, R-squares of the regressions, and
the exposures to the innovation factors. Estimated with Newey-West corrected t-statistics in
parentheses. *, ** and *** denote significance at the 90%, 95% and 99%-level, respectively.

Fung and Hsieh (2004) with FQ1 with FQ5

Alpha Adj. R2 Alpha FQ1 Adj. R2 Alpha FQ5 Adj. R2

All 0.57 0.58 0.25 0.4 0.69 0.52 0.28 0.74
(6.94) (2.01) (3.85) (8.11) (3.31)
*** ** *** *** ***

Long/Short Eq. Hedge 0.52 0.64 0.15 0.46 0.73 0.47 0.29 0.74
(4.78) (0.97) (3.97) (4.49) (2.98)
*** *** *** ***

Fund of Funds 0.03 0.5 −0.39 0.51 0.66 −0.03 0.32 0.68
(0.23) (−3.46) (4.86) (−0.34) (3.13)

*** *** ***
Multi-Strategy 0.59 0.48 0.33 0.32 0.6 0.54 0.24 0.68

(8.02) (2.88) (3.04) (9.14) (3.22)
*** *** *** *** ***

Emerging Markets 0.93 0.58 0.27 0.81 0.69 0.84 0.43 0.66
(4.07) (1.20) (3.78) (4.20) (3.12)
*** *** *** ***

Managed Futures 0.54 0.2 0.12 0.52 0.28 0.43 0.62 0.52
(2.83) (0.47) (3.39) (2.71) (6.35)
*** *** *** ***

Global Macro 0.6 0.21 0.31 0.36 0.35 0.56 0.22 0.37
(5.91) (2.60) (3.88) (5.27) (3.10)
*** ** *** *** ***

Event Driven 0.68 0.65 0.33 0.43 0.73 0.65 0.18 0.68
(5.45) (2.45) (6.40) (5.12) (2.21)
*** ** *** *** **

Eq. Market Neutral 0.27 0.49 0.17 0.13 0.51 0.25 0.12 0.55
(5.06) (2.33) (2.53) (4.85) (2.31)
*** ** ** *** **

Other 0.7 0.46 0.63 0.09 0.47 0.69 0.09 0.49
(6.42) (5.57) (1.64) (6.45) (2.02)
*** *** *** **

Fixed Income Arb. 0.47 0.33 0.48 −0.02 0.32 0.46 0.04 0.33
(6.58) (5.03) (−0.39) (6.54) (1.42)
*** *** ***

Convertible Arb. 0.29 0.67 −0.02 0.38 0.69 0.23 0.28 0.71
(1.51) (−0.08) (2.96) (1.33) (2.16)

*** **
Ded. Short Bias 0.4 0.78 0.17 0.28 0.78 0.36 0.17 0.78

(2.26) (0.77) (2.00) (1.97) (2.03)
** ** * **

Options Strategy 0.76 0.13 1.03 −0.32 0.15 0.8 −0.17 0.14
(4.36) (3.50) (−1.54) (4.33) (−1.11)
*** *** ***

6.5. Panel Regressions

We know from Table 5 that the Q1-portfolio of hedge funds is associated with specific

characteristics that differ between Q1 and Q5 funds. For example, it might be that the
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higher incentive fees are co-determined with being innovative, so that performance is not

driven by innovation alone, but also by the incentive structure. Additionally, we want to

test whether out-performance due to innovation is decreasing with the age of the fund. If

hedge fund returns are decreasing to scale, and the provision of capital is competitive, we

should see a declining effect of being a Q1 fund over the fund’s lifetime, as theorised by

Berk and Green (2004). To control for characteristics and test for age and flow-effects,

we estimate a panel regression.

To test for the impact of characteristics, age and flow-effects, we first perform a panel

regression with the hedge fund alphas as dependent variable. The alphas are obtained

from estimating the Fung and Hsieh (2004) 7-factor model for each fund with a rolling

window of 24 months. To test for robustness, we also estimate Fama-MacBeth regressions,

see for example Fung, Hsieh, Naik, and Teo (2015) and Sun, Wang, and Zheng (2012).

This entails the estimation of cross-sectional regressions of alpha for each month and

reporting time-series averages of the coefficients. Table 8 has the results, for three different

specifications.

The first thing to note from the results in Table 8 is that the outcomes for the panel

regressions vis-à-vis the Fama-MacBeth estimations differ in size and significance for many

controls, Q1, and for every specification. This suggest that either the panel regressions are

misspecified, or that the coefficients on the explanatory variables are not stable over time.

In the context of hedge funds, the latter explanation seems the most likely. Therefore, we

focus on the Fama-MacBeth outcomes.

In all models, the significant characteristics are as expected from Table 5 and consistent

with the existing literature on the sources of hedge fund out-performance. For example,

age has positive sign, with implies that older funds have a better performance. This is

generally assumed to be a selection effect: good performing funds survive longer.

For model 1, the coefficient for Q1 is negative for the Fama-MacBeth regression. This

suggests that the property of early-entry of the hedge funds in the Q1-portfolio might

not be the sole reason for its out-performance, at least not for the complete lifetime. The

performance results in Table 4 use the first 24 months of returns, while here the complete

return histories are used. The intuition of innovation-driven out-performance in the early

years of the fund is confirmed by the results in model 2. Here, we include interaction
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Table 8

Panel and Cross-Sectional Regressions
We regress hedge fund abnormal returns on fund characteristics. The columns labelled ‘Panel’
denote random effects GLS regressions with per fund clustered standard errors. We also run
Fama and MacBeth (1973) regressions to estimate risk premiums in the cross-sections. Alphas
are computed with a 24-month rolling window and adjusted for the Fung and Hsieh (2004)
7 factors. We control for backfill-bias. We focus on the 2003-2010 window as in Table 4.
The time-varying variables: size (Log AUM), flows (Flow) and net-of-fees returns (Return) are
appropriately averaged over 12-month windows and lagged by one month.

(1) (2) (2)

Panel Fama-MacBeth Panel Fama-MacBeth Panel Fama-MacBeth

Q1 −0.11 −0.08 0.48 0.56 0.35 0.39
(−1.01) (−3.67) (1.72) (4.26) (1.21) (2.71)

*** * *** ***
Q1 × Age −0.14 −0.14 −0.1 −0.11

(−2.23) (−3.70) (−1.57) (−2.57)
** *** **

Q1 × Flowt−1 0.02 0.04
(1.41) (9.55)

***
Joint test for Q1 vars * **

(5.50) (10.02)

intercept 0.48 −1.06 0.24 −1.19 0.26 −1.19
(0.73) (−4.33) (0.35) (−4.70) (0.39) (−4.68)

*** *** ***
Age 0.07 0.05 0.1 0.07 0.1 0.06

(1.94) (2.89) (2.47) (3.41) (2.42) (3.19)
* *** ** *** ** ***

Incentive Fee 0.02 0.0 0.02 0.0 0.02 0.0
(3.61) (1.08) (3.37) (1.23) (3.42) (1.04)
*** *** ***

Management Fee 0.01 0.01 0.01 0.01 0.01 0.02
(0.14) (0.25) (0.20) (0.44) (0.21) (0.80)

Log(1+Minimum Investment) −0.03 0.04 −0.03 0.04 −0.03 0.04
(−1.04) (2.60) (−0.99) (2.72) (−1.02) (2.70)

** *** ***
Lock-up Period 0.01 0.0 0.01 0.0 0.01 0.0

(0.89) (1.87) (0.97) (2.23) (0.89) (1.81)
* ** *

Redemption Frequency 0.01 −0.04 0.01 −0.04 0.01 −0.05
(0.90) (−5.08) (0.85) (−4.75) (0.89) (−5.38)

*** *** ***
Leveraged 0.06 −0.07 0.04 −0.08 0.04 −0.07

(0.69) (−2.78) (0.41) (−3.35) (0.46) (−2.98)
*** *** ***

Personal Capital −0.07 −0.05 −0.04 −0.03 −0.05 −0.04
(−0.41) (−1.23) (−0.27) (−0.83) (−0.29) (−1.08)

High Water Mark −0.21 −0.14 −0.21 −0.13 −0.2 −0.12
(−2.14) (−4.40) (−2.12) (−4.35) (−2.07) (−4.41)

** *** ** *** ** ***
Avg. 12m Flowt−1 0.01 0.01 0.01 0.01 0.01 0.01

(2.10) (5.09) (2.12) (5.19) (1.78) (3.15)
** *** ** *** * ***

Avg. 12m Returnt−1 0.14 0.51 0.13 0.5 0.13 0.49
(6.06) (16.40) (6.13) (16.20) (6.05) (16.05)
*** *** *** *** *** ***

Avg. 12m Log(AUM)t−1 −0.02 0.04 −0.01 0.04 −0.01 0.04
(−0.54) (7.33) (−0.34) (7.20) (−0.36) (7.42)

*** *** ***
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terms of Q1 with age. The coefficient for Q1 is 0.56 and significant, the coefficient for

the interaction term of Q1 and age is -0.14 and significant. Model 3 adds lagged flows as

a control, which turns out have a positive and significant impact on alphas. The coefficient

on Q1 remains significant at 0.39. The decrease of innovation benefits with age can be

compared with the impact of age on performance in the context of hedge funds entering

emerging markets, see Aggarwal and Jorion (2010).

The results in Table 8 are consistent with Berk and Green (2004) in the context of

hedge funds: hedge fund investors are sophisticated and invest in funds that are innovative.

Over the lifetime of the fund, both performance and flows decrease. Managers obtain

the rents from their skills through the fee structure and the increase in assets under

management that decrease the potential out-performance but increases management fees.

7. Robustness

7.1. Correction for backfill bias

Backfill bias could influence results for hedge funds with an initial reporting date

that is later than the inception date. Returns before the initial reporting date are called

‘back-filled’. In our analysis we assumed innovation is especially beneficial to an innovator

shortly after it enters the market due to increasing competition from imitators. As such

we chose not to control for ‘back-fill’ bias before. However, our results are potentially

affected by back-filled returns, which might not reflect actual investment returns and

possibly overstate the benefits from being early.

To analyse the sensitivity to the backfill bias, we remove the first twelve months of

returns of each fund and re-do our analysis8. Table 9 has the results for excess returns

and loadings on the early entrants.

The results in Table 9 are qualitatively similar to those in Table 4 and Table 6.

Excess returns are significantly positive for the first quintile portfolio and monotonically

decreasing over in the quintiles.

8The clustering remains identical, as return information is not used for clustering.
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Table 9

Correcting for Backfill-Bias
This table has the summary statistics of portfolios of hedge funds, with returns corrected for
backfill-bias. We eliminate the first 12 months and keep the following 24 months for the port-
folios. As in Table 4, portfolios are formed by sorting hedge funds into quintile-portfolios based
on their entry time in the cluster. So, Q1 represents the portfolio of hedge funds that belong
to the first 20% of funds to arrive in a cluster, Q2 the following 20%, etc. A separate portfo-
lio consists of funds that are not clustered, labelled ‘No Cluster’ (NC). The portfolio return is
equally-weighted, using months 13 to 36 of each fund to compute returns. The row label ‘Q1-
Q5’ corresponds to a portfolio with a long position in Q1 and a short position in Q5. Portfolios
for ‘Q1-NC’ and ‘NC-Q5’ are formed likewise. ‘Alpha’ and ‘R2’ are the portfolio alpha and
adjusted R-squared from the Fung and Hsieh (2004) 7-factor model, with Newey-West corrected
t-statistics in parentheses. *, ** and *** denote significant differences from zero (or normality)
at the 90%, 95% and 99%-level, respectively.
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Q1 96 0.89 1.01 −1.58 0.22 0.9 1.48 4.66 0.28 1.15 0.18 0.7 0.12
*** * * (5.90)

***
Q2 96 0.67 1.29 −2.46 −0.05 0.84 1.56 2.95 −0.59 −0.19 0.18 0.45 0.29

*** ** * (3.37)
***

Q3 96 0.51 1.56 −6.6 −0.02 0.79 1.38 3.32 −1.82 5.84 0.4 0.26 0.51
*** *** *** *** (2.20)

**
Q4 96 0.49 1.91 −9.19 −0.2 0.66 1.75 3.7 −1.95 7.16 0.42 0.16 0.57

** *** *** *** (1.09)

Q5 96 0.45 2.45 −7.96 −0.45 0.81 1.63 10.1 −0.48 3.89 0.23 0.07 0.38
* * *** ** (0.36)

No Cluster 96 0.73 1.77 −6.81 −0.03 0.99 1.94 5.11 −1.38 4.06 0.37 0.41 0.71
*** *** *** *** (4.77)

***

Q1-Q5 96 0.44 2.15 −7.59 −0.54 0.27 1.17 7.0 0.43 3.18 0.28 0.46 0.3
** * *** *** (2.40)

**
Q1-NC 96 0.16 1.4 −3.78 −0.45 0.02 0.48 6.24 1.18 5.11 0.5 0.12 0.64

*** *** *** (1.03)

NC-Q5 96 0.28 1.59 −7.44 −0.46 0.27 1.14 7.0 −0.27 7.94 0.09 0.18 −0.05
* *** (1.09)

7.2. Additional Risk Factors

It might be that innovation is a proxy for an omitted risk factor in the Fung and Hsieh

(2004) 7-factor model. One possible candidate is the return on an emerging markets index,

on which hedge funds usually load significantly. Adding this factor to the model does not

change the results (see Panel C of Table 10).

An alternative explanation of our results is that hedge fund innovators are the first
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Table 10

Portfolio Results With Additional Risk Factors
This table has portfolio results for entry-time sorted portfolios, with additional risk factors. As
in Table 4, the portfolio return is equally-weighted, using the first 24 months of each fund to
compute returns. Alpha’ and ‘R2’ are the portfolio alpha and adjusted R-squared from a Fung
and Hsieh (2004) 7-factor model with additional factors. The first additional factor is the Pastor
and Stambaugh (2003) measure of liquidity, PS Inn. The second additional factor is the Sadka
(2006) Permanent-Variable (Sadka PV) liquidity factor. The third additional factor is the return
on the MSCI Emerging Market index. Newey-West corrected t-statistics in parentheses. *, **
and *** denote significant differences from zero (or normality) at the 90%, 95% and 99%-level,
respectively.

Panel A: Fung and Hsieh (2004) with PS Inn

Q1 Q2 Q3 Q4 Q5 No Cluster Q1-Q5 Q1-NC NC-Q5

Alpha 0.66 0.66 0.43 0.17 0.03 0.6 0.46 −0.11 0.41
(4.62) (4.86) (3.86) (1.46) (0.16) (7.65) (2.31) (−0.88) (2.78)
*** *** *** *** ** ***

PS Inn 0.02 0.02 0.02 0.05 0.02 0.03 0.01 −0.01 0.01
(1.55) (1.08) (0.84) (3.27) (0.57) (2.18) (0.25) (−0.50) (0.61)

*** **

R2 0.13 0.33 0.29 0.54 0.24 0.66 0.07 0.35 −0.02

Panel B: Fung and Hsieh (2004) with Sadka PV

Q1 Q2 Q3 Q4 Q5 No Cluster Q1-Q5 Q1-NC NC-Q5

Alpha 0.66 0.65 0.42 0.13 −0.02 0.57 0.52 −0.07 0.43
(4.50) (4.70) (3.31) (1.03) (−0.09) (6.31) (2.62) (−0.57) (2.97)
*** *** *** *** *** ***

Sadka PV −0.07 0.03 0.07 0.22 0.31 0.17 −0.38 −0.24 −0.14
(−0.41) (0.22) (0.33) (1.08) (0.99) (0.84) (−1.50) (−1.51) (−0.81)

R2 0.11 0.32 0.28 0.5 0.25 0.65 0.09 0.37 −0.02

Panel C: Fung and Hsieh (2004) with Em Mkt

Q1 Q2 Q3 Q4 Q5 No Cluster Q1-Q5 Q1-NC NC-Q5

Alpha 0.58 0.58 0.32 0.04 −0.13 0.47 0.55 −0.04 0.44
(3.83) (3.89) (2.89) (0.35) (−0.70) (6.21) (2.58) (−0.34) (2.89)
*** *** *** *** *** ***

Em. Mkts. 0.08 0.09 0.13 0.14 0.17 0.14 −0.1 −0.07 −0.04
(2.32) (3.02) (4.05) (5.63) (3.27) (5.63) (−1.83) (−2.41) (−0.92)
** *** *** *** *** *** * **

R2 0.17 0.39 0.41 0.6 0.32 0.76 0.1 0.39 −0.02

to find new markets that are initially less liquid. Then, the excess return for innovative

funds might be a reflection of the liquidity premium in a new market or for new investment

opportunities. Once other funds start following the same investment strategy, liquidity

increases and the earliest funds earn an excess return. To correct for the effect of liquidity,

or liquidity timing, we include the Pastor and Stambaugh (2003) liquidity factor as well as
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Table 11

Zero-Distance Clustering
This table has portfolio results for entry-time sorted portfolios, with a clustering set-up that
only clusters identical hedge funds, i.e., a threshold distance for clustering based on the 144
binary descriptors (see Appendix A) of 0 is used. As in Table 4, the portfolio return is equally-
weighted, using the first 24 months of each fund to compute returns. Alpha’ and ‘R2’ are the
portfolio alpha and adjusted R-squared from a Fung and Hsieh (2004) 7-factor model. Newey-
West corrected t-statistics in parentheses. *, ** and *** denote significant differences from zero
(or normality) at the 90%, 95% and 99%-level, respectively.
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Q1 96 1.06 1.33 −4.16 0.53 1.16 1.7 5.38 −0.34 3.0 0.22 0.8 0.23
*** *** ** (5.48)

***
Q2 96 0.96 1.41 −3.08 0.27 1.11 1.66 8.67 1.21 8.95 0.17 0.67 0.34

*** *** *** * (4.51)
***

Q3 96 0.59 1.23 −3.79 −0.01 0.75 1.37 3.32 −0.7 1.29 0.23 0.34 0.23
*** *** ** ** (2.66)

***
Q4 96 0.55 1.48 −6.39 0.0 0.78 1.27 4.13 −1.52 5.87 0.4 0.29 0.44

*** *** *** *** (2.24)
**

Q5 96 0.41 1.5 −5.8 −0.25 0.61 1.31 3.23 −1.41 4.24 0.38 0.14 0.4
*** *** *** *** (1.12)

No Cluster 96 0.89 1.52 −4.44 0.03 1.11 1.92 4.14 −0.97 1.51 0.29 0.58 0.63
*** *** ** *** (6.89)

***

Q1-Q5 96 0.65 1.49 −3.11 −0.18 0.54 1.36 5.45 0.75 1.55 0.24 0.5 0.0
*** *** ** ** (2.28)

**
Q1-NC 96 0.17 1.19 −2.32 −0.48 0.08 0.75 4.39 0.75 1.89 0.32 0.06 0.25

*** *** *** (0.49)

NC-Q5 96 0.48 1.0 −1.98 −0.12 0.46 1.08 3.66 0.21 0.7 −0.04 0.27 0.2
*** (2.10)

**

the permanent-variable liquidity factor of Sadka (2010) (see Panel A and B in Table 10).

Portfolio results remain unchanged.

7.3. Sensitivity to Clustering Parameters

Our results depend on how well the clustering algorithm is able to group funds with

similar characteristics. In our analysis so far we set the maximum distance between two

clusters and/or funds to 0.12. However, given that distance parameter, some funds are

not assigned to a cluster or their cluster is too small and they are discarded, as denoted

in Table 3, Table 4, and Table 5 with the label ‘No Cluster’. Changing the maximum

distance parameter on which clustering is based allows us to increase the sample size,
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but it may also affect the results. To assess the sensitivity of the results to a different

maximum distance parameter, we redo our estimations for zero-distance clustering. This

is equivalent to making clusters based on identical funds. Based on the whole time sample

used in clustering (1994–2012) we are able, in this case, to assign 2,116 (20%) of funds

to a quintile. 2,300 (22%) funds are found to be in clusters which do not satisfy our

minimum requirement of 5 funds per cluster, while 6,141 (58%) funds are not clustered

at all. Moreover, we identify 14 fewer clusters of innovation in the relevant time period

of 2003–2010.

We construct quintile portfolios as before, and compute Fung and Hsieh (2004) 7-factor

alphas. Table 11 reports the results.

Table 11 confirms our findings on the excess returns of innovators vs. laggards. Over-

all, early entrants display higher mean returns and alphas than funds in higher quintiles.

The portfolio with a long position in Q1-funds and short in Q5 has a significantly positive

mean return and alpha (both higher than those obtained under the optimal clustering

distance of 0.12). As well, unclustered funds have similar characteristics as Q1-funds, in

line with our previous findings.

Our results might also be sensitive to the number of clustering variables used for

grouping hedge funds, and some variables might not be relevant to clustering. To test

for the sensitivity of our results to the choice of clustering variables, we cluster using the

binary variables in Appendix B, but without those from the category Fund Details. This

leaves us with 129 (out of 144) variables. The portfolio results are in Table 12.

Table 12 shows that the patterns for mean returns and alpha remain, with a decrease

over the quintile portfolios from Q1 to Q5.

7.4. Fund Families

It might be that we are picking up the flagship funds of hedge fund management

companies as innovators, as in Fung, Hsieh, Naik, and Teo (2015). And our Q5-funds

could then be the follow-on funds. To test to what extent this is driving our results,

we measure the degree in which funds from the same fund families are determining our

clusters. To identify fund families, we use fuzzy matching of (partial) fund names with
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Table 12

Limited Set of Clustering Variables
This table has portfolio results for entry-time sorted portfolios, with a clustering set-up that
uses a subset of 129 variables out of possible 144 binary descriptors. We remove Derivatives,
InvestsInManagedAccounts, OpenEnded, HighWaterMark, RegisteredInvestmentAdviser, FX-
Credit, Leveraged, Futures, Guaranteed, InvestsInOtherFunds, OpenToPublic, AcceptsMan-
agedAccounts, Margin, CurrencyExposure, PersonalCapital characteristics. As in Table 4, the
portfolio return is equally-weighted, using the first 24 months of each fund to compute returns.
‘Alpha’ and ‘R2’ are the portfolio alpha and adjusted R-squared from a Fung and Hsieh (2004) 7-
factor model. Newey-West corrected t-statistics in parentheses. *, ** and *** denote significant
differences from zero (or normality) at the 90%, 95% and 99%-level, respectively.
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ph
a

Ad
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R
2

Q1 96 0.93 1.25 −3.26 0.18 1.03 1.65 5.38 0.03 1.86 0.29 0.65 0.12
*** ** *** (4.58)

***
Q2 96 0.9 1.38 −3.69 0.0 1.12 1.84 3.99 −0.55 0.58 0.11 0.67 0.19

*** ** (4.70)
***

Q3 96 0.71 1.31 −3.45 0.02 0.85 1.58 3.56 −0.77 1.05 0.23 0.43 0.31
*** *** * ** (3.89)

***
Q4 96 0.45 1.59 −6.54 −0.36 0.73 1.39 3.09 −1.67 5.17 0.36 0.15 0.52

*** *** *** *** (1.26)

Q5 96 0.42 1.95 −6.21 −0.29 0.42 1.49 5.74 −0.76 2.62 0.22 0.08 0.33
** *** *** ** (0.51)

No Cluster 96 0.92 1.54 −4.55 0.1 1.2 1.89 4.42 −0.99 1.75 0.3 0.61 0.65
*** *** ** *** (7.73)

***

Q1-Q5 96 0.5 1.73 −4.2 −0.35 0.31 1.36 5.2 0.1 1.24 0.19 0.4 0.12
*** ** * (2.33)

**
Q1-NC 96 0.01 1.3 −4.56 −0.5 0.1 0.55 3.7 −0.2 2.06 0.45 -0.12 0.36

*** *** (−1.04)

NC-Q5 96 0.49 1.31 −4.24 −0.09 0.39 1.18 5.47 −0.02 4.43−0.12 0.37 0.0
*** *** (3.14)

***

a hand-checked final test of similarity. Table 13 reports the degree of agreement between

our clusters of hedge funds and those resulting from fund family identification.

In order to quantify the degree of similarity between clusters and fund families, we

perform two exercises. We first assume that true identification is obtained with the FBC

algorithm. In 2003–2010 period there are 157 FBC clusters with 2,579 funds which come

from 905 different fund families. This already suggests that the overlap between the FBC

clusters and fund families is not high. We also perform formal tests of cluster quality and

report three entropy based measures: homogeneity, completeness, and their harmonic
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Table 13

Fund Families
This table compares the overlap between clusters as an output of the Fast Binary Clustering
with maximum distance of 0.12 and classification based on fund family membership. The sample
includes funds from all FBC clusters that are alive in the 2003–2010 period, as in Table 3. The
column lablled ‘FBC True, Family Candidate’ assumes that FBC clusters are the true division
of funds and is based on 2579 funds. The columns labelled ‘Family True, FBC Candidate’
assumes that the family membership is the true division and is based on 6141 funds in total.
We report number of distinct true and candidate clusters to which all funds belong. Three
entropy based measures of cluster quality are considered: homogeneity, completeness, and V-
measure. Homogeneity is highest when observations from different true clusters are not grouped
together by an algorithm. Completeness is highest when for each true cluster, all observations
are grouped into a single cluster by an algorithm. The V-measure is a harmonic mean of
the two other measures. Two normalised measures are reported: Adjusted Rand Index (ARI)
and Adjusted Mutual Information (AMI). ARI measures similarity between the true and the
generated partitions. AMI measures the agreement between the two labellings.

Number of clusters Entropy based Normalized

True Candidate True Candidate Homogeneity Completeness V. ARI AMI

FBC Fund family 157 905 0.84 0.55 0.66 0.05 0.25
Fund family FBC 905 3719 0.8 0.65 0.72 0.03 0.14

mean (V-measure). A homogeneous candidate cluster consists only of funds belonging to

the same true cluster. Completeness is obtained if all funds form the same true cluster

are grouped into the same candidate cluster. The V-measure in this case amounts to 0.66,

where 1.00 corresponds to full agreement.

The results in the table show that our clusters, using the strategy descriptors are

composed of different funds than the family-clusters. This suggests that fund families do

not have the strategy components in common, but rather that they operate in different

markets (low completeness). Moreover, fund families are more likely to expand operations

in the markets they are already present in than to enter a new market (homogeneity is

relatively higher).

The entropy measures tend to be inflated for higher number of clusters. To mitigate

this bias, we also report two normalised measures: Adjusted Rand Index (ARI) and

Adjusted Mutual Information (AMI). Both measures indicate very low overlap between

FBC clusters and fund families.

Alternatively, we consider fund family membership to be true classification. The 905

fund families—in fact—consist of 6,141 funds about 60% of which are not clustered. The
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results confirm the findings of the previous scenario.

8. Conclusions

In this paper we cluster hedge funds by their use of assets instruments, sector and

investment focus, and fund details. We find that funds that enter a cluster early have

a higher excess return than funds that enter the cluster at a later date. The effect is found

for individual clustered funds as well as for portfolios sorted on entry time in the cluster.

The results show that it is possible to define clusters of hedge funds based on descrip-

tive characteristics, other than the investment style. It suggests that the characteristics

are actually related to the strategy followed by a hedge fund, and can be used to proxy

for innovation taking place in the industry. In turn, early entrance in a cluster of similar

hedge funds appears to be a signal of skill. The benefits to investors of the out-performance

that is related to innovation, decrease with the age of the funds.

With respect to fees, we find that early entrants charge higher incentive fees and lower

management fees than funds that enter later in the cluster. Together with the effect of

age, we take this as further evidence that there is a competitive market for hedge fund

assets, with decreasing returns to scale. Successful investors mirror the skills of hedge fund

managers in that the timing of the investment is important. Later-stage unsophisticated

investors can not be expected to receive a significant excess return. Nonetheless, this

does not rule out demand for the alternative risk exposures and associated risk premiums

that hedge funds can provide from investors who are otherwise limited in their investment

strategies.
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A: Hedge fund properties used for clustering

Assets Instruments Investment Focus Investment Focus (cont’d)
AE_Cash SF_BioTechnology IA_TrendFollower
AE_Convertibles SF_CloseEndedFunds GF_Africa
AE_Equities SF_CorporateBonds GF_AsiaPacific
AE_ExchangeTraded SF_Diversified GF_AsiaPacificExcludingJapan
AE_IndexFutures SF_EmergingMarketBonds GF_EasternEurope
AE_Options SF_EmergingMarketEquities GF_Global
AE_OTC SF_Financial GF_India
AE_PrimaryFocus SF_Gold GF_Japan
AE_Warrants SF_GovernmentBonds GF_LatinAmerica
AF_Cash SF_GrowthStocks GF_NorthAmerica
AF_Convertibles SF_HealthCare GF_NorthAmericaExcludingUSA
AF_ExchangeTraded SF_LargeCap GF_Other
AF_FixedIncome SF_MediaCommunications GF_Russia
AF_Forward SF_MediumCap GF_UK
AF_Futures SF_MicroCap GF_USA
AF_Options SF_MoneyMarkets GF_WesternEurope
AF_OTC SF_NaturalResources GF_WesternEuropeExcludingUK
AF_PrimaryFocus SF_NewIssues IF_Bankruptcy
AF_Swaps SF_OilEnergy IF_CapitalStructureArbitrage
AF_Warrants SF_Other IF_DistressedBonds
AC_Agriculturals SF_PrivateEquity IF_DistressedMarkets
AC_BaseMetals SF_PureCurrency IF_EquityDerivativeArbitrage
AC_Commodity SF_PureEmergingMarket IF_HighYieldBonds
AC_Energy SF_PureManagedFutures IF_MergerArbitrageRiskArbitrage
AC_ExchangeTraded SF_RealEstateProperty IF_MortgageBackedSecurities
AC_Forwards SF_Shipping IF_MultiStrategy
AC_Futures SF_SmallCap IF_PairsTrading
AC_Indices SF_SovereignDebt IF_RegD
AC_Metals SF_Technology IF_ShareholderActivist
AC_Options SF_TurnaroundsSpinOffs IF_SociallyResponsible
AC_OTC SF_Utilities IF_SpecialSituations
AC_Physical SF_ValueStocks IF_StatisticalArbitrage
AC_PreciousMetals IA_Arbitrage
AC_PrimaryFocus IA_BottomUp Fund details
AC_Softs IA_Contrarian AcceptsManagedAccounts
ACUR_Currency IA_Directional CurrencyExposure
ACUR_ExchangeTraded IA_Discretionary Derivatives
ACUR_Forwards IA_Diversified FXCredit
ACUR_Futures IA_Fundamental Futures
ACUR_HedgingOnly IA_LongBias Guaranteed
ACUR_Options IA_MarketNeutral HighWaterMark
ACUR_OTC IA_NonDirectional InvestsInManagedAccounts
ACUR_PrimaryFocus IA_Opportunistic InvestsInOtherFunds
ACUR_Spot IA_Other Leveraged
ACUR_Swaps IA_RelativeValue Margin
AP_OtherAssets IA_ShortBias OpenEnded
AP_Property IA_SystematicQuant OpenToPublic
AP_PrimaryFocus IA_Technical PersonalCapital

RegisteredInvestmentAdvisor
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B: Fast Binary Clustering

The dataset has 16051 hedge funds (created after January 1994) with 144 binary

variables that describe properties. The challenge for any clustering algorithm is to identify

clusters based on (i) binary variables and (ii) do so in an acceptable amount of time.

Existing algorithms like the k-means algorithm (Lloyd, 1982; Steinhaus, 1956; Ball and

Hall, 1965; MacQueen, 1967) with smart seeding (Arthur and Vassilvitskii, 2007) and

DBSCAN (Ester, Kriegel, Sander, and Xu, 1996) do not produce satisfactory results

or do it in a very restrictive setting. Our Fast Binary Clustering (FBC) algorithm is

a combination of the two, as each one separately is not suitable for the task, as shown in

Table B.1.

Table B.1 shows the outcomes of the two existing clustering algorithms, k-means and

DBSCAN, for a simulated clustered dataset of binary data. With the simulated data, we

know the clusters beforehand so we can check the efficiency of each algorithm, in terms of

the number of clusters it identifies, and whether the cluster composition is correct. Pan-

els A and B differ in number of characteristics (NH) and number of clusters considered

(NC). In both cases, clusters comprise of the same number of observations. Each sample

is randomly created by drawing a random matrix with NH rows and NC columns. In each

column of this matrix a region is marked mutation-prone, on average 15% of NH charac-

teristics are allowed to differ between each observation in the cluster and the randomness

is limited to the mutation-prone region. The archetype columns are cloned 50 times each

to create the cluster and for each of the 50NC columns mutation-prone regions are ran-

domised. All observations belong to a cluster and there is no observation-noise. Where

applicable different distance functions are considered. Input parameters for the clustering

algorithms were chosen to reflect true, or close to true, levels. All values reported are

normalised such that 1 represents the optimal level, and values farther away from unity

show weakness of algorithms considered. We report the number of clusters created ex-

cluding observations considered noise as multiple of the true number of clusters. Time

reported is a multiple of the minimum average time across the algorithms. Three entropy

based measures of cluster quality are considered: homogeneity (homog.), completeness

(compl.), and V-measure. These measures are not normalised with respect to random

labelling which means they tend to be inflated for higher number of clusters. Homogene-
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Table B.1

Fast Binary Clustering Compared to Other Algorithms
Comparison between three clustering algorithms: DBSCAN (density based), k-Means (centroid,
with k-Means++ seeding), and FBC (an agglomerative hybrid clustering algorithm combining
hierarchical, centroid, and density-connected algorithms). Panels A and B differ in number of
characteristics (NH) and number of clusters considered (NC). In both cases clusters comprise of
the same number of observations. Where applicable different distance functions are considered.
Input parameters for the clustering algorithms were chosen to reflect true, or close to true, levels.
All values reported are normalised such that 1 represents the optimal level, and values farther
away from unity show weakness of algorithms considered. Three entropy based measures of
cluster quality are considered: homogeneity (homog.), completeness (compl.), and V-measure.
Two normalised measures are reported: Adjusted Rand Index (ARI) and Adjusted Mutual
Information (AMI).

Panel A: 50 clusters, 2500 observations, 50 characteristics, 16348 replications

DBSCAN k-Means FBC

cityblock cosine euclidean cityblock cosine

0.15 0.1 0.15 0.1 0.15 0.1 48 50 52 0.15 0.1 0.15 0.1

N clusters 0.54 0.54 0.54 0.54 0.57 1.75 0.96 1.0 1.04 1.0 1.01 1.0 1.0
(0.20) (0.20) (0.20) (0.20) (0.23) (0.29) (0.00) (0.00) (0.00) (0.00) (0.02) (0.00) 0.01

Time 1.13 1.13 1.21 1.18 1.15 1.14 1.11 1.11 1.17 1.04 1.0 1.11 1.05
(0.64) (0.64) (0.61) (0.64) (0.65) (0.64) (0.64) (0.61) (0.58) (0.60) (0.67) (0.61) 0.60

Homogeneity 0.08 0.08 0.08 0.08 0.09 0.36 0.99 1.0 1.0 1.0 1.0 1.0 1.0
(0.04) (0.04) (0.04) (0.04) (0.04) (0.10) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 0.0

Completeness 0.65 0.65 0.65 0.65 0.64 0.69 1.0 1.0 0.99 1.0 1.0 1.0 1.0
(0.04) (0.04) (0.04) (0.04) (0.04) (0.05) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 0.0

V-measure 0.15 0.15 0.15 0.15 0.15 0.47 0.99 1.0 1.0 1.0 1.0 1.0 1.0
(0.06) (0.06) (0.06) (0.06) (0.06) (0.10) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 0.0

ARI 0.0 0.0 0.0 0.0 0.0 0.02 0.96 0.99 0.99 1.0 0.99 1.0 1.0
(0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.00) (0.01) (0.00) (0.00) (0.01) (0.00) 0.0

AMI 0.05 0.05 0.05 0.05 0.05 0.27 0.98 1.0 0.99 1.0 0.99 1.0 1.0
(0.02) (0.02) (0.02) (0.02) (0.03) (0.10) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 0.0

Panel B: 100 clusters, 5000 observations, 100 characteristics, 7459 replications

DBSCAN k-Means FBC

cityblock cosine euclidean cityblock cosine

0.15 0.1 0.15 0.1 0.15 0.1 48 50 52 0.15 0.1 0.15 0.1

N clusters 0.0 0.0 0.01 0.02 0.1 0.27 0.98 1.0 1.02 1.0 1.0 1.0 1.0
(0.01) (0.01) (0.01) (0.02) (0.05) (0.08) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Time 1.02 1.03 1.02 1.02 1.01 1.02 1.0 1.0 1.02 1.02 1.01 1.02 1.01
(0.58) (0.58) (0.58) (0.59) (0.58) (0.58) (0.58) (0.59) (0.58) (0.59) (0.59) (0.59) (0.58)

Homogeneity 0.0 0.0 0.0 0.0 0.02 0.07 0.99 1.0 1.0 1.0 1.0 1.0 1.0
(0.00) (0.00) (0.00) (0.00) (0.01) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Completeness 0.95 0.95 0.92 0.82 0.73 0.77 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.13) (0.13) (0.16) (0.18) (0.09) (0.05) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

V-measure 0.0 0.0 0.0 0.01 0.04 0.13 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.00) (0.00) (0.00) (0.01) (0.02) (0.04) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ARI 0.0 0.0 0.0 0.0 0.0 0.0 0.98 0.99 0.99 1.0 1.0 1.0 1.0
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00)

AMI 0.0 0.0 0.0 0.0 0.01 0.04 0.99 1.0 1.0 1.0 1.0 1.0 1.0
(0.00) (0.00) (0.00) (0.00) (0.01) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
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ity is highest when observations from different true clusters are not grouped together by

an algorithm. Completeness is highest when for each true cluster, all observations are

grouped into a single cluster by an algorithm. The V-measure is a harmonic mean of the

two other measures. Two normalised measures are reported: Adjusted Rand Index (ARI)

and Adjusted Mutual Information (AMI). ARI measures similarity between the true and

the generated partitions. AMI measures the agreement between the two labellings. As

these measures are adjusted to accommodate agreement due to chance, they are more

reliable for higher number of clusters.

From the table, we see that DBSCAN identifies at most 27% of the clusters, and the

clusters it does find are of bad quality (homogeneity is low). The k-means algorithm

does better, by finding close to 100% of clusters (or sometimes more, an indication of

over-clustering). However, the k-means algorithm only works from the starting point of

knowing in advance the number of clusters, which is not the case in the hedge fund data.

The third set of outcomes shows the performance of the FBC algorithm, that we

explain in some detail below. It is a combination of approaches used in the DBSCAN and

k-means algorithms and performs well: it identifies all clusters correctly in minimal time.

Fast binary clustering (FBC) is an agglomerative hybrid clustering algorithm combin-

ing hierarchical, centroid, and density-connected algorithms. It requires two parameters,

the maximum distance to be considered, ε, and the amount by which distance should

be incremented after each step, ∆ε. Given the set of initial parameters and data, FBC

produces a deterministic set of clusters. Pseudo code for the FBC is presented below.

The algorithm operates as a set of two nested loops. At the outset all observations

with identical characteristics are grouped into θ-clusters (temporary, θ). A θ-cluster can

also be composed of only one observation.

The outer loop controls the hierarchical step by incrementing distance, ε, from 0 up.

ε is used in the inner loop. The outer loop runs until any of the following is satisfied: ε

is equal to its maximum allowed value, the total evaluations of the inner loop function

reached its maximum allowed value, or only one cluster remains.

The inner loop iterates between a centroid step and a density step. In the centroid step,

an archetype is assigned to each θ-cluster as a an average, possibly truncated (rounded).
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In the density step, all density-connected θ-clusters are merged into new θ-clusters. Two

θ-clusters are said to be density-connected either if given the cosine-distance between their

archetypes they are in the same ε-neighbourhood; or if there is a third θ-cluster to which

they are both density-connected. The density step performs the clustering.

The inner loop is repeated until the resulting number of θ-clusters remains unchanged,

i.e. a distance-equilibrium (ε-equilibrium) is attained. Once the algorithm is stopped, θ-

clusters larger than a predetermined minimum value (5 in this paper) are retained as final

clusters. The remaining observations are considered noise.

Each time they are applied, the centroid and density steps decreases the number of

observations (and thus comparisons to be made) which increasingly speeds up the algo-

rithm. Combined with the hierarchical nature of the algorithm and the fact it produces

a deterministic partition of data, higher values of maximum distance parameters can be

easily evaluated at an increasingly lower cost if results are retained after each outer loop

completes.

Based on simulations, FBC performs at least on par with other clustering algorithms

given the binary nature of the data. It performs well in moderate and high dimensions.

As we could observe from Table B.1, based on various measures of cluster quality it is

evident that FBC is not affected by the curse of dimensionality. It also outperforms

classical algorithms when executed with parameters which reflect reality (e.g., number

of clusters in the case of k-means). FBC is also computationally more efficient than

traditional algorithms. Their inferior performance is mainly driven by the fact that they

usually call for their sub-space versions, which adds a considerable computational burden

as key sub-spaces need to be identified on a per observation basis, e.g. in PreDeCon

(Böhm, Kailing, Kriegel, and Kröger, 2004) or SUBCLU (Kailing, Kriegel, and Kröger,

2004).

1 ##

##FBC pseudo−code

##

#parameters

maximum_distance #varepsi lon

6 distance_increment #Delta_varepsilon

distance_measure

#algortihm

current_distance=0
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c lu s t e r s={}

11 while current_distance<=maximum_distance :

inner_loop_counter=0

while inner_loop_counter==0

or
c lu s t e r s [ current_distance ] [ inner_loop_counter]==c lu s t e r s [ current_distance ] [

inner_loop_counter −1]:

16 #Centroid step

for c lu s t e r in c lu s t e r s [ current_distance [ inner_loop_counter ] ] :

c l u s t e r s [ current_distance ] [ inner_loop_counter ] [ c l u s t e r ] [ ’ archetype_genome ’

]=

average ( c lu s t e r s [ current_distance ] [ inner_loop_counter ] [ c l u s t e r ] [ ’

funds ’ ] )

21 #Density step

proximity_matrix=getDistances (

[ archetype_genome for archetype_genome in c lu s t e r s [ current_distance ] [

inner_loop_counter ] [ c l u s t e r ] . keys () ] ,

distance_measure

)

26 cluster_ids_counter=0

for c lu s t e r in c lu s t e r [ current_distance ] [ inner_loop_counter ] :

i f c lu s t e r [ ’ c luster_id ’]==None :

c lu s t e r [ ’ c luster_id ’ ]=cluster_ids_counter

cluster_ids_counter+=1

31 else :

c luster_id=c lu s t e r [ ’ c luster_id ’ ]

for other_funds in neighbourhood ( c luster , proximity_matrix ) :

other_funds [ ’ c luster_id ’ ]=cluster_id

#hierarch ica l step

36 current_distance+=distance_increment

c lu s t e r s=discardSmallClusters ( c l u s t e r s [ current_distance ] )

}
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