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1. Introduction

There is vast empirical evidence that for many economic variables conditional variances

and covariances change over time. Given the importance of heteroscedasticity in finance

and macroeconomics1 it is not surprising that estimation of the time-varying volatility

has attracted substantial attention in the literature. As any time-varying parameter,

volatility can be modelled both with observation- and parameter-driven models.2 The

observation-driven approach is most notably represented by the family of generalised

autoregressive conditional heteroscedastic (GARCH) models originated by Engle (1982)

and Bollerslev (1986). Stochastic volatility models are a typical example of the parameter-

driven class.3 Additionally, volatility is also estimated with realised measures which are

model-free and specific to the literature on heteroscedasticity.4 Of the three methods, the

GARCH family is the most widely used in practice due to its computational simplicity

and data availability.

All three methods are routinely applied to the same data and produce estimates of

static parameters, confidence intervals for these parameters, and estimates of the volatil-

ity path. In addition, the (parameter-driven) stochastic volatility and realised volatility

models both produce confidence bands for the time-varying volatility (Barndorff-Nielsen

and Shephard, 2002; Durbin and Koopman, 2012, §14.5), even in the absence of parame-

ter uncertainty. By contrast, the volatility paths estimated with the GARCH models are

reported without such confidence bands. Unless a researcher truly believes that a cho-

sen GARCH model is the data-generating process and there is no parameter uncertainty,

the lack of precision measures around the path of there time-varying parameter puts

the GARCH family at a disadvantage.5 This paper introduces a novel bootstrap proce-

1In macroeconomics, failure to account for time-varying volatility may lead to incorrect inference and
inefficient estimates of parameters of interest (Engle, 2001; Hamilton, 2010). Fernández-Villaverde and
Rubio-Ramírez (2013) further argue that many extensions in the dynamic stochastic general equilibrium
(DSGE) model can be achieved by allowing for heteroscedasticity.

2A detailed discussion of the two approaches can be found in Cox (1981).
3Shephard (2005) gives a review of the subject.
4See, e.g., Andersen, Bollerslev, Diebold, and Labys (2001); Barndorff-Nielsen and Shephard (2002);

Andersen, Bollerslev, Diebold, and Labys (2003); Corsi (2009).
5 For instance, for approximately a quarter after the default of Lehman Brothers in September 2008,

annualised volatility of S&P 500 returns had been oscillating around the 70% level based on estimates
of many GARCH models, including: GARCH(1,1) of Engle (1982); Bollerslev (1986), GJR-GARCH(1,1)
of Glosten, Jagannathan, and Runkle (1993), t-GAS(1,1) of Creal, Koopman, and Lucas (2011), etc.; see
NYU Stern’s Volatility Lab page for a figure with these results. It is unknown, however, how likely it is
that the true unobserved volatility was indeed at 70% and not, e.g., at 50% or 100% at any point in time
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dure which allows the econometrician to draw confidence bands around volatility paths

estimated by GARCH models. I accomplish this by treating these models as misspeci-

fied filters rather than as true data-generating processes. I am able to account for both

filtering6 and parameter uncertainty.

The lack of confidence bands for filtered paths of time-varying parameters is not

unique to GARCH models. In fact, most—if not all—observation-driven methods suffer

from this shortcoming. Among these are the autoregressive conditional duration (ACD)

model of Engle and Russell (1998), the dynamic conditional correlation (DCC) model of

Engle (2002), the dynamic copula models of Patton (2006), or the class of generalised

autoregressive score models of Creal, Koopman, and Lucas (2013) and Harvey (2013),

to name just a few. In addition, the generalised autoregressive method of moments of

Creal, Koopman, Lucas, and Zamojski (2015) is also observation-driven and suffers from

the same defect. The procedure described in this paper can be potentially applied to all

these models. Thus, the GARCH family is just one possible illustration of a wider class

of models for which my bootstrap procedure can be implemented.

With that in mind, consider a typical representative of the GARCH family, the

GARCH(1,1) model:

yt = εt, (1)

εt = ηt

√
σ2

t , (2)

σ2
t+1 = ω + αy2

t + βσ2
t , (3)

where yt denotes the observed returns and the innovations, ηt, are drawn independently

from a distribution with zero mean and unit variance. For clarity of exposition, I continue

with this example in the remainder of the paper.

Blasques, Koopman, Łasak, and Lucas (2016) define three different sources of uncer-

tainty which can play a role in modelling time-varying parameters: model, parameter,

and filtering uncertainty. First, model uncertainty reflects the fact that both the true

in that period. The S&P 500 case is explored in Section 7.1. In particular, I show estimated volatility
path with the LITE bands in Figure 6.

6 Filtering and model uncertainty are results of different ways in which time-varying models can be
misspecified. A brief explanation is provided later, for a detailed discussion see Blasques, Koopman,
Łasak, and Lucas (2016).
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distribution of ηt and the true observation eq. (1) are not known. I do not focus on this

type of uncertainty. Parameter uncertainty refers to the fact that the static parameters

in the model (here ω, α, and β) are replaced by their maximum likelihood estimators.

Finally, filtering uncertainty stems from possible misspecification in the transition eq. (3)

for σ2
t , for instance, if a GARCH model is used to estimate a volatility which, in fact,

follows a stochastic volatility process. Note that Nelson (1992) shows that under specific

conditions GARCH(1,1) produces volatility paths that converge to the true path as the

sampling frequency is increased, i.e., as we go from monthly, through daily, to hourly

(and so forth) data.

Assume, for now, that there is no parameter uncertainty, i.e. that ‘pseudo-true’ val-

ues of the static parameters are known.7 If the GARCH(1,1) model is assumed to be

the true data-generating process, then as is evident from eqs. (1) to (3), ηt is the only

source of randomness. Thus, given an observed time-series of returns and in the absence

of uncertainty about the static parameters, there is also no uncertainty about the dy-

namic parameters—there is no need for confidence bands. Conditional on the data, the

GARCH(1,1) model gives a single, deterministic path. This path coincides with the true

path only if the GARCH model is indeed the data-generating process. At first sight, there

is also no way of generating confidence bands around such deterministic paths. For exam-

ple, simulating from the GARCH(1,1) data-generating process yields new time-series and

new paths of volatility. However, these paths can lie nowhere near the path estimated

for the empirical data. By contrast, the bootstrap procedure proposed here—which I call

the Local In TimE (LITE) bootstrap—retains volatility patterns which are observed in

the data.

The first contribution of this paper is the design of the bootstrapping approach for

GARCH filters under misspecification. In particular, I obtain confidence bands which

account for the filtering uncertainty. The essence of the approach is to draw bootstrap

samples conditional on the observed (filtered) volatility path. In fact, I do not use esti-

mates of the static parameters in constructing bootstrap time-series as I do not sample

from the GARCH(1,1) data-generating process. More precisely, I replace the typical i.i.d.

residual bootstrap used so far in the literature (Hall and Yao, 2003; Gonçalves and Kilian,

7 Blasques, Koopman, and Lucas (2014) define the pseudo-true parameter as a unique maximiser of
the log likelihood in the limiting case, i.e., when the number of observations tends to infinity.
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2004; Pascual, Romo, and Ruiz, 2006):

y∗
t = η̂∗

k

√
ω̂ + α̂y∗2

t−1 + β̂σ∗2
t−1, (4)

by:

y∗
t = η̂∗

k

√
σ̂2

t , (5)

where subscript k on η̂∗
k means that the raw (normalised) residuals are resampled. LITE

bootstrap samples are obtained without using the transition eq. (3) implied by the filter.

Instead, I directly re-scale the resampled residuals using the fixed volatility path, σ̂2
t ,

estimated from the empirical data. In this way, paths in the bootstrap world preserve

volatility patterns which are observed in the data. Figure 1 compares the two approaches.

In Panel A, the real world data is generated by a GARCH model, i.e., time t innovation

determines the following period’s volatility. The aim of the bootstrap is to replicate

the entire data-generating process and estimation (solid lines) in the ‘bootstrap world’.

The typical implementation replaces the unknown static parameters with their estimates

(dashed arrow). This exemplifies the plug-in principle (see, e.g. Efron, 2003). In Panel B,

volatility is not generated by a GARCH model, and I replace the i.i.d. bootstrap with the

LITE procedure. Just like in the i.i.d. bootstrap, estimation steps (arrows) in Panel B are

the same in both worlds. The main difference between the two approaches lies in which

point estimates are retained from the real world to construct samples in the bootstrap

world. The i.i.d. bootstrap uses raw residuals and estimates of the static parameters,

discarding the empirical path of volatility. In contrast, I propose to use the estimates of

the dynamic parameter along with the residuals.

Due to the plug-in principle, the LITE bootstrap accounts for the parameter uncer-

tainty as well as the filtering uncertainty discussed before. In comparison, the method

proposed by Blasques, Koopman, Łasak, and Lucas (2016) accounts only for the param-

eter uncertainty as they explicitly assume that the filter is the true model. Thus, LITE

seems to be more relevant for financial applications where the available time-series are

both long and can be sampled at very high frequencies decreasing the impact of parameter

uncertainty.
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Figure 1

Point of novelty
This figure illustrates the difference between a typical i.i.d. residual bootstrap and the LITE
bootstrap. Vertical arrows correspond to estimation. Point estimates taken from the real world
to construct samples in the bootstrap world are coloured red and presented in the first line.

Panel A: GARCH is the DGP, i.i.d. residual bootstrap
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Panel A: GARCH is not the DGP (just a filter), LITE residual bootstrap
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I show that simply taking the estimated path of volatility and implementing an i.i.d.

resampling (Efron, 1979; Freedman, 1984) of residuals produces poor results. The re-

sulting bootstrap paths are over-smoothed, inconsistent, and cannot be used to create

confidence bands with good coverage properties. The second innovation of this paper

is, therefore, the way in which I set up the resampling within the bootstrap procedure.

To overcome the above difficulty, I consider residuals to be valid replicates only within

a local window of time. This ensures that values of not only true volatilities but also

local measurement errors are close to one another. Matching misfit both in value and in

sign turns out to be of great importance in ensuring good performance of the bootstrap.

The resampling proceeds in a manner resembling a moving-window which motivates the

‘Local In TimE’ name of the entire procedure. The length of the window depends on the

persistence of the underlying process. Efron’s, i.i.d. rule is a special case of the LITE

bootstrap.
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I evaluate the performance of the LITE bootstrap using a range of simulation ex-

periments. I find that the average coverage of LITE confidence bands is close to the

nominal level set by the econometrician. Moreover, LITE confidence bands behave re-

markably similar to those which could have been obtained in Monte Carlo experiments,

i.e. when both the true path of volatility and the true conditional densities are known.

In addition to generating confidence intervals, LITE can also act as a smoother and mit-

igate the impact of sampling error.8 Based on simulations, the paths obtained with the

LITE smoother are characterised by significantly lower root mean square errors than the

GARCH paths. LITE volatility paths appear to inherit consistency properties (in the

sense of Nelson, 1992) of the underlying GARCH filter. Simulation evidence suggests

that as sampling frequency is increased, both GARCH and LITE paths seem to converge

to the true latent volatility path and the LITE confidence bands shrink. Description of

the asymptotic behaviour of the LITE confidence bands is left for future research. Finally,

the LITE bootstrap is easily implementable and does not impose a significantly higher

computational burden.

Volatility modelling has been most popular in finance where the trade-off between risk

and return is emphasised in theories of asset pricing. Estimates of the latent volatility and

its forecasts are key inputs in asset valuation and risk management tools. Standard volatil-

ity models can be used as well to measure systemic risk (Engle and Siriwardane, 2015),

bringing volatility modelling to the forefront of current policy discussion. Additional in-

formation provided by the LITE confidence intervals is, thus, meaningful to both investors

and policy-makers since the LITE procedure automatically constructs a confidence inter-

val for the one-period-ahead forecast provided by the GARCH model. This allows us to

compute similar confidence intervals for widely used risk measures like value-at-risk (VaR)

or expected shortfall. Furthermore, I observe that the width of the confidence intervals

changes over time even after conditioning on the estimated volatility path. This can be

taken advantage of in many investment strategies, e.g., risk targeting or risk parity.

This paper contributes to two strands of the literature. First, this paper adds to

the vast literature on observation-driven models and allows, for the first time, to plot

confidence bands around time-varying parameters in a way that accounts for both the

8Sampling error causes a well-established attenuation bias, where estimated volatility path based on
observed data is characterised by lower persistence than in the underlying data-generating process.
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filtering and the parameter uncertainty. Although bootstrapping techniques have been

previously used for GARCH models, the focus thus far has been on obtaining confidence

intervals only for the static parameters see e.g., Hall and Yao (2003); Gonçalves and

Kilian (2004); Pascual, Romo, and Ruiz (2006). As a by-product of the procedure, LITE

produces confidence intervals for these parameters as well, but I propose to use them

mainly to gauge the level of uncertainty due to filtering.

Secondly, the LITE resampler adds to the general bootstrap literature. The resampler

generates pseudo time-series which imitate the true—unobserved—dependence structure

along with conditional distributions at all times. Although fundamentally different, LITE

is close in spirit to the ‘local bootstrap’ of Paparoditis and Politis (2000, 2002) where

locality is defined in parameter space,9 not in time. Their ‘local bootstrap’ does not

capture potential persistence of misfit yielding bootstrap samples with either too fat or

too thin tails. Locality in the time dimension is a stricter condition as it also accounts

for persistence of misfit.

The remainder of this paper is organised as follows. Section 2 describes the setting

and the GARCH(1,1) filter I focus on. In Section 3, I describe LITE bootstrap procedure.

I elaborate on the moving-window resampler in Section 4. In Section 5, I discuss how

performance of the confidence bands is measured and evaluated in this paper. Section 6

shows how to operationalise the choice of the window length (bandwidth). I implement

the procedure in an empirical study of S&P 500 returns in Section 7.1. In Section 7.2,

I look at coverage of the LITE confidence intervals in a series of simulation experiments.

Finally, Section 8 concludes.

2. The GARCH filter

Consider a stationary sequence Y = {yi : 0 ≤ i ≤ T} where T is the size of the

observed sample. Let σ2
t , σ̂2

t , σ̂2
t

(∗,b) denote the true value of the latent volatility at time

t = 1, . . . , T , the estimated value, and the estimate based on the bth bootstrap time-series,

9 This criterion may not be able to ensure validity of replicates if the filter is misspecified and/or the
filtered path lags behind the true path. For instance, estimated volatility in two periods can indeed be
close. But, if the volatility in one of the periods was increasing while it was decreasing in the other, the true
volatility is respectively under- and over-estimated by a lagging filter. Drawing replicates indiscriminately
from both periods yields conditional distributions in the bootstrap samples with either too fat or too thin
tails.
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respectively. I use a short-hand notation, {σ2
t }, to denote the full, realised path of the

time-varying volatility {σ2
1, σ2

2 . . . σ2
T }. By analogy, {σ̂2

t } and {σ̂2
t

(∗,b)} denote fitted paths

based on the original sample and the bth bootstrap sample.

The data-generating process considered here is as follows:

yt = εt, (6)

εt = ηt

√
σ2

t , ηt ∼ N (0, 1) ,

σ2
t = M

(
σ2

1, . . . , σ2
t−1, y1, . . . , yt−1

)
,

where the true conditional variance σ2
t follows a process assumed to be unknown to the

econometrician. Although the true dependence model, M , is not known it is assumed to

produce sufficiently smooth paths of volatility such that it can be approximated with the

GARCH(1,1) filter (updating rule):

σ̂2
t+1

(
σ̂2

t , yt, ω, β, α
)

= ω + βσ̂2
t + αy2

t , (7)

where α, β, and ω need to be estimated.

One example of a dependence model which can be successfully approximated with the

GARCH(1,1) filter is the stochastic volatility process. For such data-generating processes,

Nelson (1992) shows that under certain regularity conditions GARCH(1,1) produces a con-

sistent estimate, {σ̂2
t }, of the unknown path {σ2

t }. Among the conditions is smoothness

of the volatility path and. In particular, presence of jumps (or other forms of discontinu-

ity) in the volatility process usually breaks down the consistency immediately around the

point of the jump. However, even in these cases observation-driven filters can be a useful

tool in extracting paths of time-varying parameters.

3. Local in time bootstrap

In this section, I describe the lite bootstrap procedure. For clarity of exposition, I refer

to the path of the time-varying volatility estimated from the empirical data, {σ̂2
t }, as the

‘GARCH path’. Paths obtained in the bootstrap procedure, {σ̂2
t

(∗,b)}, are collectively

called ‘bootstrap paths’.
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The lite procedure takes the ‘GARCH path’ (σ̂2
t ) and GARCH residuals as inputs.

The role of the algorithm is to create valid bootstrap samples, meaning pseudo time-series

which sufficiently recreate the true—unobserved—dependence structure in the data. In

this way, the bootstrap world poses the same challenges for the filter as the real world.

The lite bootstrap algorithm takes the following five steps:

Step 1: Estimate {σ̂2
t } with the GARCH(1,1) filter and obtain the corresponding series

of fitted residuals {ε̂t}. Subsequently, create a series of raw residuals, {η̂t}, by

adjusting each ε̂t for scale, such that η̂t = (σ̂t)−1ε̂t.10

Step 2: Generate B bootstrap series of raw residuals, {η̂t
(∗,b)},by sampling with replace-

ment from raw residuals using the LITE resampler which is described in detail

in Section 4.11

Step 3: Re-scale the raw bootstrap residuals with the GARCH path, {σ̂2
t }, from Step 1

to obtain B bootstrap samples with a typical element, yt
(∗,b) = εt

(∗,b) = σ̂tη̂t
(∗,b).

Step 4: For each bootstrap sample, {yt
(∗,b)}, estimate a volatility path, {σ̂2

t
(∗,b)}, with the

GARCH(1,1) filter.

Step 5: The empirical distribution function of the time-varying volatility at time t is

defined as:

FB,t(x) = PrB,t

(
σ2

t ≤ x
)

= 1
B + 1

B+1∑
i=1

1

(
σ2

t
(∗,b) ≤ x

)
, (8)

where 1 (·) is an indicator function returning 1 if the condition in parentheses

is true. Confidence intervals for σ̂2
t are inferred from the empirical distribution

function and defined as:

[
F −1

B,t

(
a

2

)
, F −1

B,t

(
1 − a

2

)]
.

If B is chosen such that a
2 (B + 1) is an integer, this simplifies to selecting the

a
2 (B + 1)th and (1− a

2)(B +1)th value of a sorted series {σ̂2
t , σ̂2

t
(∗,1), . . . , σ̂2

t
(∗,B)}.12

10 In the case of volatility modelling, the raw residuals can be further demeaned but should not be
standardised, see discussion in Section 4.

11At this stage, assume the LITE resampler uses the standard Efron’s rule (i.i.d. resampling), but
applies it in a moving-window fashion.

12 Assuming filtered paths are stored as row vectors, vertically stack bootstrap paths {σ̂2
t

(∗,b)} and the
GARCH path {σ̂2

t } from Step 1 together to form a (B + 1) × T matrix. A series {σ̂2
k, σ̂2

k
(∗,1), . . . , σ̂2

k
(∗,B)}
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The bootstrapped confidence intervals can be computed to arbitrary precision by

increasing B.

In contrast to previous literature (e.g., Hall and Yao, 2003; Gonçalves and Kilian,

2004; Pascual, Romo, and Ruiz, 2006), the LITE bootstrap does not require simulating

new volatility paths from the transition equation implied by the filter. Instead, in Step 3,

I propose to rescale resampled residuals in the bootstrap world with the volatility path

that was filtered out from the empirical data. As such, estimates of the static parameters

governing the updating rule are not directly used in the creation of bootstrap samples.

It is precisely the omission of this step that allows LITE to create pseudo time-series

for which newly filtered paths are relatively close to the considered ‘GARCH path’ at

all times and consistently across bootstrap samples. This is the first contribution of the

paper.

To develop intuition on how does the LITE procedure achieve this, consider a moti-

vating example. In Figure 2, I look at a simple scenario in which the volatility process

exhibits a structural break in the middle of the visible sample. In Panel A, I use the

LITE procedure while Panel B contains results obtained with a traditional approach. In

both cases, the plots on the left-hand side contain the true volatility path, the estimated

‘GARCH path’, as well as two ‘bootstrap paths’, i.e., volatility paths filtered from boot-

strap samples. Plots on the right-hand side show the resulting 90% confidence bands

obtained based on 3999 bootstrap replications. As the LITE constructs bootstrap sam-

ples based on the ‘GARCH path’, the ‘bootstrap paths’ share similar dynamic properties

with it. Furthermore, the ‘bootstrap paths’ preserve temporal patterns of volatility that

are seen in the original data. Confidence bands created with the LITE reflect this and

tightly follow the ‘GARCH path.’ The bands appear to provide good coverage as well.

Due to this, they are meaningful and can be used for hypothesis testing.

Panel B contains results obtained with a traditional bootstrap procedure. In the

traditional approaches, bootstrap-true paths13 are generated recursively based on the

filter’s transition equation. These paths will have the same dynamic properties, but do

not preserve temporal patterns. As a result, the ‘bootstrap paths’ can be nowhere near

corresponds to the kth column of this matrix and is the sole input in producing a confidence interval for
that period of time.

13 The true values of parameters in the bootstrap world. For LITE this would be the ‘GARCH path.’
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Figure 2

Motivation for the LITE bootstrap
This figure illustrates differences between the traditional and the LITE bootstrap procedures.
I consider a simple scenario where the volatility regime changes from low to high in the middle
of the visible sample. I plot the true volatility path in pink and the filtered GARCH(1,1) path in
black. The initial adjustment period of 50 observations is removed. In each panel, the plots on
the left-hand side contain two bootstrapped volatility paths. These paths are drawn as dashed
lines. The plots on the right-hand side contain 90% confidence bands which can be obtained
with the respective bootstrap procedure. Panel A contains results for the LITE bootstrap. In
Panel B, I plot results which would be obtained with a traditional bootstrap procedure. Here, the
GARCH(1,1) transition equation is used to draw new volatility paths while generating bootstrap
samples.

Panel A: LITE boostrap
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Panel B: Traditional bootstrap
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the ‘GARCH path’. For instance, the left-hand side plot of Panel B contains one filtered

path which indicates there was hardly any period of high volatility in its bootstrap sample.

Although the second bootstrap sample did include a prolonged period of high volatility,

it occurred too early. It is clear from the right-hand side plot of Panel B that confidence

bands for volatility paths obtained with the traditional bootstrap procedures are not

informative at any particular point in time. In fact, the true volatility is outside of the 90%

confidence band almost throughout the whole sample in this example. The bands become

even less meaningful if the procedure is applied to empirical data that includes relatively

short, but economically meaningful, periods of extremely high volatility. In such a setting,

the confidence bands would label crisis periods, which are usually characterised by an
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increase in volatility, as outliers in their entirety. This is not surprising. The traditional

approaches were never meant to provide bands around a path of the time-varying volatility.

Instead, the focus of this strand of literature is on measuring uncertainty around estimates

of the static parameters in the filter under the assumption that the filter is also a good

description of the data-generating process. As these bootstrap procedures create samples

unconditionally from the model, the resulting confidence bands are reflective of, at most,

the unconditional value of the volatility. In comparison, the LITE bootstrap creates

pseudo time-series conditional on the observed data.

The (percentile) confidence intervals computed in Step 5 are invariant under monotone

transformations. Thus, LITE can be used to produce bands for volatility even if the filter

is specified in terms of variances or log-volatilities. Due to this property, it is also possible

to produce confidence intervals for statistics that depend on variance, like value-at-risk or

expected shortfall.

4. LITE resampler

The second contribution of this paper is the LITE resampler which attempts to ensure

that observations in bootstrap samples are drawn from correct conditional distributions

even if the ‘GARCH path’ locally under- or over-estimates the true conditional volatility.

Although temporal patterns of volatility in the LITE procedure are enforced through

the rescaling of the raw residuals with the ‘GARCH path’ in Step 3, the misspecified nature

of the filter creates an additional obstacle. Ideally, one would sample εt
(∗,b) from the same

distributions as εt. In Step 3, εt
(∗,b) are constructed as the product of σ̂t and resampled η̂t.

Due to misspecification, the ‘GARCH path’, σ̂t, locally under- or over-estimates the true

volatility which affects conditional distributions of raw residuals. The local misfit, though

persistent, is both changing in time and unknown. As a result, special attention to finding

valid replicates for η̂t is required. In particular, while consecutive raw residuals are likely

to be under- or over-scaled to the same degree, this cannot be guaranteed for any two

randomly selected η̂t. As the nature of the resampler dictates which raw residuals are

considered as valid replicates at any point in time, the quality of the obtained confidence

bands will depend on the type of resampling which is used in Step 2.

The LITE resampler operates in a moving-window fashion and draws replicates for η̂t
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from a ‘small’ neighbourhood around time t. The size of the window is determined by

a bandwidth parameter, w. Let δ (t) ∼ ∆w
t be a random offset whose distribution function

assigns equal probabilities14 to elements in a time-varying sample space:

{i : max [1, t − w] ≤ i ≤ min [t + w, T ] , i ∈ Z} , (9)

with T ≥ w ≥ 1. Given a bth draw, δ
(b)
t , from the distribution ∆w

t , the raw residual η̂
t+δ

(b)
t

is drawn as a replicate for the residual at time t. Analogously σ̂2
t+δ

(b)
t

is the corresponding

variance used to normalise the replicating residual. The resampling bandwidth can be

chosen to minimise squared bias of bootstrap paths w.r.t. the ‘GARCH path’ (see Section 6

for details). A bootstrap observation at time t is then obtained as:

yt
(∗,b) = εt

(∗,b), (10)

εt
(∗,b) = η̂

t+δ
(b)
t

√
σ̂2

t (11)

=
ε̂

t+δ
(b)
t√

σ̂2
t+δ

(b)
t

√
σ̂2

t .

To illustrate the rationale behind the LITE resampling procedure, I again consider

a case in which the volatility process exhibits structural breaks. In Figure 3, the volatility

switches to a high regime at time t = 100 and returns to the low regime at t = 250. I plot

the true and the filtered path of the volatility in Panel A. In Panel B, I look at the degree

to which the raw residuals, η̂t, are under- or over-scaled due to the misfit of the ‘GARCH

path’. For instance, at the beginning of the sample the volatility is estimated relatively too

high. The raw residuals are over-scaled and are too small when compared with the true ηt.

Thus, the difference between |η̂t| and |ηt| tends to be negative for t < 100. Similarly, in the

high volatility regime, the ‘GARCH path’ tends to be below the true path which results

in under-scaled raw residuals. The severity of this problem is the highest shortly after

a structural break. Furthermore, a Monte Carlo experiment based on 10,000 replications

reveals that the misfit and the resulting under- or over-scaling of raw residuals (the blue

line in Panel B) is not due to sampling bias, but indeed a consequence of misspecification.

Consider the problem of selecting a valid replicate for an observation at time t2. In

14 The uniform kernel used here can be replaced by other kernels with compact support.
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Figure 3

Motivation for the LITE resampler
This figure illustrates the local resampling procedure. Panel A shows a setting where there
are two breaks in the true volatility path. At time t = 100 the volatility shifts from a low
to a high regime and subsequently returns to the low regime at t = 250 of the visible sample
period. The initial adjustment period is removed. I plot the true path of the volatility and the
filtered GARCH(1,1) path. In Panel B, I plot in grey differences between absolute values of raw
residuals, ηt, from the true ηt. For reference, I also provide a Monte Carlo average based on
10,000 replications in blue.
Consider two observations, at time t1 and t2 respectively, for which bootstrap replicates are
drawn. The striped regions around points t1 and t2 show periods with valid replicates based on
the resampling bandwidth of w = 10. Note that within these two periods observations share
three characteristics: (i) the unobserved, true volatility values and (ii) the estimated values
are close. Consequently, (iii) they are encumbered by similar levels of misfit. In particular,
the volatility is overestimated around t1 and underestimated around t2. Raw residuals from
the period around t2 are not valid replicates for residual at t1 as they are under-scaled and, in
effect, their distribution has higher standard deviation than is required to imitate the conditional
distribution around t1.

Panel A: GARCH(1,1) volatility, σ̂t

σt − σ̂tGARCH(1,1)True path
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Panel B: Deviations of absolute raw residuals, |η̂t| − |ηt|
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0

2

this case, the volatility is estimated too low. The LITE resampler exploits the fact that,

in a sufficiently small window of time around t2, observations share three characteristics:

(i) the unobserved, true volatility values are similar, (ii) the estimated values are close,

and consequently (iii) the volatility estimates in this neighbourhood suffer from a similar

misfit. It follows, that the raw residuals around t2 can be expected to be under-scaled to
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a similar degree and are, therefore, valid replicates for η̂t2 . The larger the persistence of

the local misfit, the more effectively the LITE resampler is able to account for the misfit.

In particular, if the replicate raw residual is under-scaled to the same degree as η̂t2 , the

resulting bootstrap innovation εt2
(∗,b) is drawn from the same conditional distribution as

εt.

In contrast, raw residuals around time t1 are not valid replicates for the observation

at time t2. This is because the volatility at t1 is estimated too high and the corresponding

raw residuals are over-scaled. A bootstrap innovation εt2
(∗,b) constructed by multiplying

an over-scaled raw residual by an underestimated value of volatility would then be in fact

drawn from a distribution whose variance is much smaller than σ2
t .

For ‘small enough’ values of the bandwidth parameter, the LITE procedure effectively

replaces εt with a different draw from a conditional distribution which is as close to

the true one as possible. In addition to the confidence intervals, it is then possible to

obtain a smoothed version of {σ̂2
t } by computing the average or the median bootstrap

estimate. Simulations in the empirical part of the paper suggest that the smoothed series

are characterised by lower average root mean square error than GARCH paths from Step

1.

If bandwidth is set to be equal to the number of available observations (w = T ), LITE

recovers the i.i.d. bootstrap of Efron (1979), Freedman (1984), and Efron and Tibshirani

(1986). However, based on the simulation evidence I present in Section 6, it appears it it

is never optimal to choose the bandwidth this large.15 In practice, w rarely exceeds 1%

of the sample size if chosen according to a rule I propose in Section 6.

REMARK 4.1. Note that bootstrap procedures which do not employ a moving-window

resampler are unlikely to consistently select valid replicates for misspecified filters. For

instance, the local bootstrap of Paparoditis and Politis (2002) considers a residual at

time k to be a potential draw for time t if |ft − fk| < ϵ for some ϵ → 0 even if |t − k|

is large. In contrast to LITE , this procedure is local in the parameter space and may
15 In fact, I conjecture that that as T → ∞, I require that w → ∞ in a way that ensures that w/T → 0.

In other words, as the number of observations increases the fraction of observations which are considered
to be valid replicates tends to zero, but in such a way the number of valid observations goes to infinity.
The increase in the number of observations here should be understood in the fill-in asymptotics sense, i.e.,
it is obtained by through an increase in the sampling frequency. It could, for instance, mean switching
from monthly to daily, or from daily to hourly data spanning the same period of time. This is a familiar
condition which is also present in block bootstrap procedures (Carlstein, 1986; Kunsch, 1989).
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misidentify the set of valid replicates. To see why, consider again the example in Figure 3.

In the extreme case, although the estimates of volatility in the periods shortly after each

structural break are very close, the corresponding raw residuals should not be considered

valid replicates. This is because values of misfit associated with the same value of the

estimated volatility are significantly different in these two periods of time. Raw residuals

after the volatility increases are severely under-scaled and significantly over-scaled after

volatility decreases. Defining locality based on distance in parameter space does not, in

principle, ensure that misfit due to misspecification is accounted for. Conversely, if {σ2
t }

was generated by a sufficiently persistent process for which observation-driven filters can

be expected to perform well, defining a neighbourhood for residuals in the time dimension

implies that the associated values of the filtered variance are also relatively close.

REMARK 4.2. In the bootstrap literature (see, e.g., Hall and Yao, 2003) it is common

to re-centre and further rescale raw residuals in order to correct for over-fitting and for

the fact that residuals may not necessarily sum to zero in non-linear models. If the filter

is misspecified, however, normalising raw residuals can adversely affect performance of

the bootstrap. Let η̃t = η̂t − ¯̂ηt/s (η̂t) be a standardised raw residual. ¯̂ηt and s (η̂t) are,

respectively, the sample average and standard deviation of the raw residuals. Bootstrap

replicates would then be defined as ε̃(∗,b)
t = η̃

t+δ
(b)
t

σ̂t. Consider the familiar setting where

at t = tl there is a shift from a low to a high volatility regime. Given the misspecification,

the filtered variance path does not adjust to the new setting until time t = th (where

th > tl). For simplicity, assume that outside of the transition period the ‘GARCH path’ fits

perfectly, i.e. ∀t /∈ [tl, th] : σ̂2
t ≡ σ2

t . This is a more stylised scenario than the one presented

in Panel A of Figure 3. Then, the full series of raw residuals, {η̂t}, are drawn from

a mixture of normals, with fatter tails induced by under-scaling during the adjustment

window and, consequently, standard deviation above 1. Without standardising, all raw

residuals outside of the transitional period would be perfect replicates for one another.

However, after standardising the whole series of raw residuals, the correctly scaled raw

residuals would be scaled down. As a result, bootstrap innovations would be drawn from

conditional distributions with too small variances even if a moving-window resampler

was used. Thus, standardised residuals are no longer valid replicates for innovations

in neighbouring time periods. In the presence of misspecification, confidence intervals

constructed based on the standardised series may exhibit worse coverage properties. In
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real data settings, this issue especially degrades coverage of the estimated confidence

bands in low volatility states.

REMARK 4.3. The LITE resampling procedure uses single raw residuals. Alternatively, it

is possible to use larger blocks of observations to further recreate the dependence structure

in the bootstrap world. In this case the random offset δ (t) is drawn from ∆w,l
t where l

is the block size and T ≥ w ≥ l ≥ 1. Bootstrap residuals are drawn at times t =

{1 + 0l, 1 + 1l, . . . , kl}, where k is the number of blocks needed to match the sample

length (i.e., T = kl).16 If w = T , the procedure collapses to the overlapping block

bootstrap of Kunsch (1989).

5. Performance evaluation

Performance of the LITE confidence bands can be assessed by comparing the actual

coverage with the chosen nominal level. In this paper, I adopt the following notion of

coverage.

Definition 5.1 (Average path coverage). Let CIlo(σ̂2
t ) and CIhi(σ̂2

t ) denote the lower and

upper bounds of the bootstrap confidence interval at time t. Then, average path coverage

for all times in T is defined as:

C (T ) =
∑

t∈T 1 [CIlo (σ̂2
t ) ≤ σ̂2

t ≤ CIhi (σ̂2
t )]∑

t∈T 1
. (12)

I use Definition 5.1 in two contexts. First, if T = {1, 2, . . . , T}, the path coverage

describes how many times (e.g., days) the true path of volatility was outside the confidence

bands. In Section 7.2, I also investigate how average coverage depends on the value of

the true volatility. In this case, T = {t : σlo
C ≤ σ2

t ≤ σhi
C } where [σlo

C , σhi
C ] is a volatility

bin. Description of the asymptotic behaviour of these bands is left for future work.

6. Feasible bandwidth selection

Quality of confidence bands obtained with LITE depends on the choice of resampling

bandwidth. In this section, I propose a feasible rule of selecting the optimal value of
16 Earlier, I conjecture that that T → ∞, w → ∞, and w/T → 0. Given this and the restriction w ≥ l,

the usual condition on block size, l
T → 0, holds in this case as well.
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this parameter. I also show simulation evidence which suggests that this feasible rule

maximises coverage.

The resampling bandwidth (which acts as a smoothing parameter) follows as the

solution to the following optimization problem:

argmin
w:δ(t)∼∆w

t

 1
T

∑
t

[
1
B

B∑
i=1

σ̂2
t

(∗,b) − σ̂2
t

]2 . (13)

Note that eq. (13) minimises the average (in time) squared bias of the estimated bootstrap

paths and not the average mean square error. A solution can be obtained by performing

a grid search over w.

Figure 4 shows simulation evidence to support the selection rule in eq. (13). In each

panel I adopt a different criterion for choosing the optimal bandwidth. Panel A shows the

feasible selection rule proposed in eq. (13). Figure 4 shows that choosing the bandwidth

parameter by minimising average squared bias reduces discrepancy between the nominal

size and the average path coverage17 of bootstrapped confidence intervals (Panel A vs.

C). It also minimises the average squared bias computed against the true series {σ2
t } as

can be seen in Panel B. In contrast, choosing the bandwidth which minimises the mean

square error w.r.t. the GARCH path (Panel D vs C) produces confidence intervals with

considerably worse coverage properties.

The choice of the optimal bandwidth can be done with fewer bootstrap replications

than are required for confidence bands. Estimation of the mean over time requires many

fewer observations than estimating a tail of the distribution. If averaging over time is

replaced by taking a median, the number of bootstrap replications can be reduced even

further. In real-world situations, I have found that is often sufficient to use as few as

B = 99 bootstrap replications if the median is employed and B = 499 if the average is

used.

As the sampling frequency increases, i.e., as we go from monthly, through daily, to

hourly (and so forth) data spanning the same period of time, the chosen feasible bandwidth

changes. In Figure 5, I present simulation evidence on the behaviour of the resampling

bandwidth, w, as the sample size increases in this fashion. Panels A and B show that

17See definition 5.1.
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Figure 4

Optimal bandwidth selection
In this figure I estimate optimal resampling bandwidth for daily returns on S&P 500 index from
the period 1980–2015. To provide simulation results, I first estimate the time-varying variance of
these returns with GARCH(1,1). This first filter pass series is then assumed to be the true series
{σ2

t } and Monte Carlo sample data is created by independently drawing innovations ηt ∼ N (0, 1)
and scaling them with {σ2

t }. For each such Monte Carlo sample series, the GARCH(1,1) is fitted
to obtain {σ̂2

t } and the LITE bootstrap method is applied. For each Monte Carlo replication,
I compute the average path coverage of a 90% nominal size confidence interval, average squared
bias calculated both against {σ2

t } and {σ̂2
t }, as well as mean square error computed against

{σ̂2
t }. All values are reported with their corresponding standard errors captured through error

bars. Monte Carlo simulations are performed for various values of the resampling bandwidth
parameter, w (shown on the horizontal axis). To accentuate emerging patterns average values
of statistics are connected using a quadratic spline. Optimal bandwidths in each panel is drawn
in red. In total, 100 Monte Carlo replications were performed for each value of the resampling
bandwidth. Bootstrap sample, B, was set at 199.
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as we increase the number of observations estimated persistence, β, tends to one, while

the learning rate, α, tends to zero. This is in line with results in Nelson (1992); Nelson

and Foster (1994), and Jensen and Lange (2010). At the same time, Panel C shows that

the size of the optimal bandwidth increases in absolute terms, but decreases as a fraction

of the sample length (Panel D). The results I present are for two different processes, one

based on the S&P 500 returns and the other on IBM data. Interestingly, given the same

estimated persistence, e.g., if β = 0.95 (for 20,000 and 40,000 observations, respectively),

the optimal bandwidth is estimated at roughly the same number of observations (10).
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Figure 5

Optimal bandwidth vs. sample size
This figure presents simulation evidence on behaviour of GARCH parameters (Panel A and B)
and the optimal w (Panel C and D) when sampling frequency is being increased. I present results
for two different processes, one estimated based on the S&P 500 returns (pink), while the other
is based on IBM data (blue). Panel C shows the feasible optimal bandwidth obtained based
on the algorithm proposed in this section and is presented in absolute terms. Panel D presents
the bandwidth as a fraction of all observations. Horizontal axis denotes the effective number of
observations.
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7. Empirical application

In this section I demonstrate the usefulness of the LITE bootstrap by evaluating

its performance in both empirical and simulation settings. I first bring the method to

real-world data. Section 7.1 contains results obtained for S&P 500 returns. Simulation

evidence is shown in Section 7.2. In simulations, I set the smoothed (LITE) volatility

path obtained for S&P 500 returns as the true path. By doing so, I am able to compare

the performance of the LITE confidence bands with a situation where both the true path

of volatility and conditional densities are known and it is possible to sample from them

infinitely many times. Note that in this way I can also compare the LITE bootstrap with

a parametric bootstrap around the GARCH path.
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7.1. Volatility of S&P 500 returns

I construct confidence intervals for volatility of daily returns on the S&P 500 index.

Results for additional indices and stocks are presented in Appendix A. The return series

is constructed by taking log differences of daily closing prices in the period 1980–2015

(9040 observations). The total return index was obtained from Datastream. For this

data, I estimate the GARCH(1,1) model and provide the LITE confidence intervals as

described in Section 3. The bandwidth parameter was chosen by minimising average

squared bias as described in Section 6 and is set at w = 7, i.e. for an observation at time

t, raw residuals from up to one week earlier and up to one week later are considered as

valid replicates. In simulations, the value of this parameter was confirmed to maximise

average coverage, see Figure 4.

The QMLE estimates for the GARCH(1,1) parameters are ω = 0.0145 (6.5652),

α = 0.0789 (13.626), and β = 0.910 (128.6) with values of the t-statistic in parenthe-

ses. Figure 6 shows the estimated path in a 7-year-long period between 2008 and 2015.

The GARCH estimated path is plotted as a dashed red line. As is typical for daily stock

returns, the GARCH path exhibits sudden and relatively large changes. At a smaller scale,

the GARCH path oscillates around what can be presumed is the true level of volatility

given the consistency results in Nelson (1992).

Figure 6 also contains 90% confidence bands around the GARCH path. Note that in

periods when the volatility suddenly increases—e.g., in October of 2008 and in August of

both 2011 and 2015—the bootstrapped confidence band reacts sharply and the median

bootstrap path which is denoted as a solid blue line is above the GARCH path. All

these cases, however, are relatively short-lived. This suggests that, at the QMLE values

of parameters, either the GARCH filter is too slow to adjust or the returns are drawn

from a fat-tailed distribution. If the former is true, the median bootstrap path might

reflect the true level of volatility more accurately. The confidence bands are for the most

part symmetric and the mean and median paths overlap. Only sporadically do the mean

and median diverge, which can be better seen in the examples presented in Appendix A.

Furthermore, the median bootstrap path offers a smoother path than the GARCH filter.

Note how the GARCH path oscillates around the median bootstrap path. Based on the

simulation evidence in the remainder of the paper, the median bootstrapped path could
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Figure 6

Volatility of S&P 500 returns with confidence bands
Confidence bands for GARCH(1,1) volatility filtered from S&P 500 returns calculated based on
closing prices of the total return index. The estimation period is 1980–2015 (9040 observations).
For clarity, I only report results for the last 7 years. Panel A contains bands for the period 2008–
2012 while Panel B shows the period 2012–2015. Note the change of scale on the vertical axis
between the two panels. Bootstrap series were constructed with the lite resampler. The optimal
bandwidth of 7 days was determined by minimising average squared bias of the bootstrapped
paths which also maximises coverage given the number of observations and the assumption
that the original GARCH(1,1) path is true. Red line shows the QMLE estimated path of
the time-varying volatility. The blue line shows the median (and average as they coincide)
value of volatility across all bootstrapped paths at time t. The light blue region around the
median bootstrap path corresponds to a confidence band with 90% nominal size computed
using B = 9999 bootstrap replications.
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be lessening the impact of the attenuation bias and actually deliver an estimate of the

true volatility with a lower average root mean square error.

As can be expected, the span of the confidence bands changes with the value of

volatility. This behaviour is driven by the changing signal-to-noise ratio. When volatility

is ‘high’, the amount of information in the data about the conditional variance is lower

than when the true volatility is ‘low’. This is because a series of high (in absolute values)

returns is a strong signal that the volatility has increased. In contrast a series of returns

which are close to zero is not as strong a signal that volatility is decreasing. However, the

width of the LITE confidence bands is not the same for similar values of volatility. This

can be observed both after sharp increases in volatility, i.e., when the median bootstrap

path is above the GARCH path, and when the GARCH path is relatively stable, e.g., in

late 2011 or in the summer of 2015. This is due to the smoothing behaviour embeded in

the LITE procedure.

7.2. Simulations

In this section, I explore properties of the LITE confidence bands in a range of simula-

tion experiments. To that end, I take the median bootstrap path obtained in Section 7.1

and assume it to be the true volatility path in Monte Carlo studies. As will become evi-

dent in this section, the median bootstrap produces a path characterised by smaller root

mean square error. The choice of the GARCH or the median bootstrap path does not

qualitatively change the results. The median bootstrap does, however, contain sharper

spikes in volatility which are harder for the GARCH filter to match. Results in this section

are based on M = 1000 Monte Carlo replications and B = 399 bootstrap samples.

For each Monte Carlo replication, I create a synthetic time-series of observations by

independently drawing a series of standard normal residuals, ηt, and scaling them using

the assumed-to-be-true path of volatility as implied by the data-generating process in

Section 2 which I restate here for convenience:

yt = εt, (14)

εt = ηt

√
σ̂2

t,SP X , ηt ∼ N (0, 1) . (15)
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The true path is shared across all replications and as it is deterministic, the GARCH(1,1)

filter is misspecified in the sense described in Section 2. Given a Monte Carlo sample

series, the GARCH(1,1) filter is used to obtain an estimated path of volatility. This path

is then used to obtain 90% confidence bands with the LITE bootstrap along with a median

bootstrap path. I keep the resampling bandwidth choice of w = 7 days from the previous

section.

Furthermore, I also compute a single confidence band based on all (1000 Monte Carlo)

GARCH paths which I denote as ‘GARCH MC’ confidence band. Since the ‘GARCH

MC’ band is obtained in an idealised setting it shows the limits of the filter. I use it as

a benchmark for the bands produced by the LITE bootstrap.

7.2.1. Quality of confidence intervals

Figure 7 contains the first set of results. In Panel A, I plot the GARCH MC band

along with bootstrapped bands from a single Monte Carlo replication. Even at a daily

frequency, both bands are close in terms of both how tight they are at most times and

how well they track the true path.

Panel B summarises coverage for different deciles of the true volatility. I use the notion

of the average path coverage from Definition 5.1. Unconditional average path coverage

for LITE bands is distributed around 77%. Bootstrap bands for the single Monte Carlo

replication in Panel A have an average path coverage of 79%. This is slightly lower than

the coverage of the benchmark, GARCH MC, which is at 84%. The fact that average path

coverage is below the nominal level is not surprising. lite is a non-parametric percentile

bootstrap procedure and these are known to produce shorter confidence intervals (Efron,

2003). The bands can be potentially improved upon with either the BCa or the ABC

method of computing percentiles (Efron and Tibshirani, 1994; DiCiccio and Efron, 1996).

However, these improvements add another layer of complexity. In particular, at this stage,

it is not obvious how to estimate additional shape parameters these methods require.

Interestingly, coverage of both the LITE and the GARCH MC bands is not uniform

and depends heavily on the value of volatility itself. When volatility is at its very lowest,

both types of bands have on average only 37% path coverage. This is due to the fact

that for these values paths are over-estimating the true volatility. Furthermore, coverage
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Figure 7

Quality of confidence intervals
This figure shows the coverage properties of confidence bands obtained with the LITE bootstrap
based on a Monte Carlo experiment. All Monte Carlo replications share the same true path of
volatility,

{
σ2

t

}
, which is drawn in black in Panel A. Data is generated by independently drawing

innovations from a standard normal distribution and scaling them with
{
σ2

t

}
. For each such

sample (i) a GARCH(1,1) filter is used to obtain a ‘GARCH’ path, and (ii) confidence bands
are obtained with the LITE bootstrap method (with resampling bandwidth of 7 observations).
In total 1000 Monte Carlo replications are performed with B = 399 bootstraps. Panel A shows
two sets of confidence bands. In blue, is a confidence band produced by the bootstrap for
a single Monte Carlo sample. As a benchmark, I also show in red Monte Carlo confidence band
based on all 1000 Monte Carlo replications.

Panel B depicts actual coverage of a 90% nominal confidence band for different levels
of volatility. As in Panel A, red circles and blue squares show coverage obtained with
GARCH(1,1) Monte Carlo and the single bootstrap. Box plots show the distribution of
coverage for bootstrapped confidence bands across all Monte Carlo replications.
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of the bands is not stable in this region which makes it difficult to correct for the bias

even though it is evident that bias correction based on the estimated value of volatility is

possible. The fact that the GARCH MC band also suffers from this issue is comforting

as the deficiency clearly stems from the filter and not from the LITE procedure. In fact,

Nelson and Foster (1994, p. 22) foresee this outcome and attribute it to the inability of

the GARCH to match the true ‘variance of the variance’ everywhere in the state space.

It also suggests that a more robust choice of filter can improve results.

In regimes with higher volatility, path coverage quickly increases towards the nomi-

nal size of 90% and is on average 86% for medium and medium-high volatilities. Note

that LITE bands have lower than nominal coverage in general. Average coverage of the

benchmark—GARCH MC—bands is below (above) the nominal level for low and high

(medium) levels of volatility.

7.2.2. Bias and RMSE of median bootstrap paths

As mentioned before, the LITE procedure can act as a smoother with the median

bootstrap path representing the smoothed estimator of {σ̂2
t }. Figure 8 provides evidence

for this claim. In Panel A, I again show the GARCH MC bands as a benchmark. In

addition, the plot contains Monte Carlo bands based on the 1000 median bootstrap paths.

The two sets of bands overlap almost fully. The only exceptions are, again, periods where

the true volatility suddenly increases. Median bootstraps track these changes much better

and as a consequence the confidence bands are shifted towards the true value. This can

be seen in Panel B of Figure 8 which contains distributions of both bias and root mean

square error produced by the GARCH and the median paths. As stated before, the root

mean-square error for the median bootstrap paths is lower than for GARCH paths. This

is also a typical case of trading in bias for a reduction in variance. In this case, this

reduction is substantial.

7.2.3. Suboptimal choice of resampling bandwidth

The resampling bandwidth has sizeable effects on coverage properties of confidence

bands produced by the LITE bootstrap. In Figure 9, I compare the situation in which

the bandwidth was either set lower or higher than the optimal level based on the rule
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Figure 8

Bias and RMSE of median bootstrap paths
In this figure I provide evidence for consistency of paths estimated using the LITE bootstrap.
Panel A shows results in the time dimension. A path of volatility which is depicted in
yellow is considered to be true in a Monte Carlo setting. Data is generated by drawing
independently innovations from a standard normal distribution and scaling them with the
yellow path. For each such sample (i) a GARCH(1,1) filter is used to obtain a ‘GARCH’
path, and (ii) confidence bands are obtained with the LITE bootstrap method (setting
the resampling bandwidth at 7 observations). In total 1000 Monte Carlo replications are
performed with B = 399 bootstraps. Panel A shows two sets of confidence bands. In blue, is
a Monte Carlo confidence band produced by all 1000 estimated median bootstrap paths. As
a benchmark, similarly constructed confidence bands out of the GARCH paths are shown in red.

Panel B shows the distribution of average bias and average root mean square error
(RMSE) across all Monte Carlo simulations. Average here is computer over the time dimension
for each replication.

Panel A: Monte Carlo confidence bands for both GARCH and median bootstrap paths
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Figure 9

Suboptimal choice of resampling bandwidth
In this figure I show the coverage properties of confidence bands obtained using the LITE
bootstrap procedure when resampling bandwidth is not chosen by minimising average squared
bias. In each panel, the figure on the left sets the resampling bandwidth at 2 days which is
smaller than the optimal 7 days. In figures on the right, the bandwidth was set to the number
of observations, this recovers the i.i.d. bootstrap of Efron (1979). Panels A, B, and C replicate
results from Figure 7 and Figure 8 which offer detailed descriptions.
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Panel B: Monte Carlo results for median bootstrap and GARCH paths
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Panel C: Real coverage of a 90% nominal confidence band vs. deciles of true volatility
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in Section 6. Panel A of this figure again compares the GARCH MC18 bands with the

LITE bands from a single Monte Carlo replication. When bandwidth is set too low, the

attenuation bias19 is strengthened. The median bootstrap is even less persistent than the

GARCH path. At the same time, confidence bands are narrower which has a universally

negative effect on path coverage shown in Panel C.

If bandwidth is set too high, as is the case in the Efron’s rule, the bootstrapped bands

provide poor coverage at approximately 60%. As is clear from Panel A, this is because

the bootstrap paths are over-smoothed and are significantly lagging behind the GARCH

path. These results are not surprising given the discussion Section 6 and only serve to

further motivate the feasible bandwidth selection which I propose therein.

Finally, the way in which the bootstrap bands lag behind the GARCH path in Panel

A is similar to how the Monte Carlo confidence bands lag behind the true volatility path in

Panel B. Further, note that the Monte Carlo experiment can be actually seen as a semi-

parametric bootstrap with i.i.d. resampling. Based on these two observations and all

the simulation results presented so far, I conclude, that the bootstrap confidence bands

obtained in the empirical part of the paper, Section 7.1, are likely to also have coverage

close to the nominal level of 90%.

7.2.4. Convergence

Performance of the LITE bootstrap should improve if the sampling frequency is in-

creased. In this section, I explore coverage properties when the process is sampled every

three hours as opposed to daily. To that end, I fit a high-degree B-spline curve to the

median bootstrap volatility path for S&P 500 returns which was previously set as the

‘true path’. This has several advantages. First of all, I avoid any micro-structure effects

and diurnal patterns in volatility which could affect results based on empirical intra-day

data. Secondly, in this way results are directly comparable to simulations discussed above.

An increase in the sampling frequency means that the volatility process becomes more

persistent.

18All results for GARCH MC, including bands and coverage are exactly the same as in Figure 7 and
Figure 8.

19Attenuation bias is a common issue in volatility modelling wherein paths estimated with real-world
data are characterised by smaller persistence than the true volatility process.
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Figure 10

Convergence
In this figure I show the coverage properties of LITE confidence bands in the case where the true
volatility process is sampled eight times more frequently (equivalent of 3-hour observations) than
in the previous examples. The optimal bandwidth was set at w = 24 periods which translates
to three days. The single bootstrap band was computed with B = 4999 bootstrap replications.
A more detailed description is given for Figure 7 which this figure replicates.

Panel A: Bootstrapped confidence interval
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Panel B: Real coverage of a 90% nominal confidence band vs. deciles of true volatility
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In this case, the optimal bandwidth is chosen to be 24 observations based on the

selection rule from Section 6. Compared to daily returns, the moving-window increases

from 15 to 49 observations. However, the fraction of observations considered as valid

replicates shrinks by half, from 15 days to only 7 days.

Figure 10 summarises results of this analysis. First of all, Panel A shows that the
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LITE bootstrap intervals are remarkably similar to the GARCH MC bands. The median

bootstrap and GARCH MC paths track the true value precisely which shows convergence

of the GARCH filter in line with the theoretical results in Nelson (1992) and Nelson and

Foster (1994). Furthermore, LITE bands are just as tight as the ideal, GARCH MC

bands.

As sampling frequency is increased, the average path coverage of the LITE confidence

bands converges to the nominal level. At a 3-hour frequency, unconditional path coverage

is on average 86% based on the results in Panel B. The increase is mostly driven by vast

improvements of coverage in extremely low and high volatility regimes. It is worth noting,

that the confidence bands appear to be accurate on both sides. Frequencies with which

the true volatility falls outside of the confidence band on either side appear to be equal

and close to the nominal value of 5% For medium volatility regimes LITE bands have

an on average 89% path coverage. Interestingly, LITE intervals remain permissive across

the board, i.e. they all approach the nominal level from below. Conversely, GARCH MC

bands are too conservative and on average cover the true value 95% of the time.

Another improvement from the increase in sampling frequency (or persistence) is seen

in stability of the confidence intervals as evidenced by the smaller box-plots in Panel B of

Figure 5 if compared to Figure 7. In other words, improvement in stability means that the

interquartile range and standard deviation of the path coverage statistic decrease. This is

of great significance even without the simultaneous improvement in the average coverage

level (Efron, 2003). Stability allows to more reliably bias correct the confidence bands by

stretching them depending on the value of the estimated volatility (or by obtaining them

using a higher nominal level).

8. Conclusions

This paper introduces a novel bootstrap procedure which allows me to compute in-

sample confidence bands for misspecified GARCH filters. The bands account for two

sources of uncertainty, including the parameter uncertainty which stems from the fact

that ‘pseudo-true’ parameters are unknown and merely estimated. More importantly, the

LITE procedure also accounts for the filtering uncertainty which comes into play when

the GARCH filter is not the true data-generating process. To my knowledge, this is the
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only procedure which accounts for both sources of uncertainty.

In simulations, average path coverage of the LITE confidence bands is close to the

nominal size. At any fixed sampling frequency, the path coverage is state-dependent and,

in particular, coverage is lower when the true volatility is very low. I show, however, that

this deficiency stems from the filter and can be potentially resolved by choosing a different

GARCH model. In general, the LITE bands behave very similarly to the Monte Carlo

confidence bands which could be constructed had the true volatility path be known. Fur-

thermore, LITE can be used to produced a smoothed estimate of the true volatility paths

by extracting the median bootstrap path. Based on simulation evidence, the smoothed

volatility paths have lower root mean square error. Furthermore, the ‘smoother’ visibly

improves fit after sudden and sizeable increases in volatility.

Finally, although the paper focuses on the family of GARCH filters, the method itself

can be potentially applied to other observation-driven or parameter-driven methods as

long as consistency of these filters can be shown or assumed.
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A. Additional empirical results

Here, I provide results for additional real-world samples of daily returns. LITE confi-

dence bands were computed for Dow Jones Industrial Average and MSCI World indices

in Figure A.1. Figure A.2 contains results for selected U.S. equities: IBM, Procter &

Gamble, and 3M. Apart from MSCI World, which starts in 2003, sample periods were set

at 1980–2015. For each series an optimal bandwidth was selected according to the rule in

Section 6.

Figure A.1

Confidence bands for volatility: world indices
This figure shows GARCH(1,1) estimated volatility for a selection of world indices along with
LITE confidence bands. Although the sample period is longer, I only report results for 2008–
2012. See Figure 6 for detailed description of all paths. LITE confidence intervals were computed
with B = 1999 replications.

Panel A: Dow Jones Industrial Average, bandwidth is set to 5 days
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Panel B: MSCI World, bandwidth is set to 5 days
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Figure A.2

Confidence bands for volatility: U.S. stocks
This figure shows GARCH(1,1) estimated volatility for a selection of U.S. stocks along with LITE
confidence bands. Although the sample period is longer, I only report results for 2008–2012.
See Figure 6 for detailed description of all paths. LITE confidence intervals were computed with
B = 1999 replications.

Panel A: IBM, bandwidth is set to 7 days
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Panel B: Procter & Gamble, bandwidth is set to 9 days
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Panel C: 3M, bandwidth is set to 12 days
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